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T
he new mathematical field of wavelet 
transforms has achieved a major suc-
cess, specifically, the Federal Bureau 
of Investigation’s decision to adopt a 
wavelet-based image coding algorithm 

as the national standard for digitized finger-
print records [11, 4, 3]. 

The FBI standard, which uses an approach 
known as wavelet transform/scalar quantiza-
tion (WSQ) image coding, was developed by pro-
ject leader Tom Hopper of the FBI’s Criminal Jus-
tice Information Services Division and Jonathan 
Bradley and Chris Brislawn from the Computer 
Research and Applications Group at Los Alamos 
National Laboratory. The standard, which is en-
tirely within the public domain, involves a 2-di-
mensional discrete wavelet transform (DWT), 
uniform scalar quantization (a process that trun-
cates, or “quantizes”, the precision of the float-
ing-point DWT output), and Huffman entropy 
coding (i.e., encoding the quantized DWT output 
with a minimal number of bits). 

The FBI has a database consisting of some 200 
million fingerprint records, stored (as they have 
been since the turn of the century) in the form 
of inked impressions on paper cards. As part of 
a modernization program, the FBI is digitizing 
these records as 8-bit grayscale images, with a 
spatial resolution of 500 dots per inch. This re-
sults in some 10 megabytes per card, making the 

current archive about 2,000 terabytes in size. 
(Note that a 3.5” high-density floppy disk holds 
“only” 1.5 megabytes.) Moreover, the FBI receives 
on the order of 30,000 new cards (� 300 giga-
bytes) per day, from all over the country, for 
background checks. After considering these 
numbers, the FBI decided that some form of 
data compression would be necessary and un-
dertook a survey of the available image com-
pression technology. 

Transform-domain data compression is based 
on finding a signal representation, preferably one 
computable via a fast transform algorithm, that 
provides the ability to represent complicated 
signals accurately with a relatively small num-
ber of bits. This role has traditionally been filled 
by the Fast Fourier Transform and its related fast 
trigonometric transforms, particularly the dis-
crete cosine transform [22]. Wavelets provide an 
important class of alternatives, however, whose 
properties make them particularly well suited for 
encoding high-resolution imagery, so let’s briefly 
review the mathematical ideas behind wavelet 
transforms. 
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Vj = spanf°(2jx − k)jk 2 Zgand 

Wj = spanfÃ(2jx − k)jk 2 Zg: 

Wavelets and Filter Banks 
A wavelet series (or “multiresolution decompo-
sition”) is a scale-based decomposition of a sig-
nal into a linear superposition of dilates and 
translates of two special functions: a scaling 
function, °, which carries the mean value and 
other low-frequency behavior of the signal, and 
a mother wavelet, Ã, which has mean 0 and en-
codes details of the signal from different length 
scales. Define subspaces in terms of the dilates 
and translates of these two functions: 

The scaling spaces, Vj, generate a multiresolu-
tion approximation of L2(R), 

Vj ̂  Vj+1 % L2(R); 

and the wavelet spaces, Wj, “fill the gaps” be-
tween successive scales: 

Vj+1 = Vj � Wj: 
In particular, we can start with approximation 
on some nominal scale, say V0, and then use 
wavelets to fill in the missing details on finer and 
finer scales: 1M 

L2(R) =  V0 +  Wj: 
j=0 

Multiresolution analysis also holds the key to 
constructing scaling functions and mother 
wavelets: since ° 2 V0 ˆ V1, it follows that the 
scaling function for a multiresolution approxi-
mation can be obtained as the solution to a 2-
scale dilational equation, X 

°(x) =  h0(k)°(2x − k); 
k 

(1) 

for some suitable sequence of coefficients, h0(k): 
Once ° has been found, an associated mother 
wavelet is given by a similar-looking recipe: X 

Ã(x) =  h1(k)°(2x − k): 
k 

(2) 

Of course, some effort is required to produce ap-
propriate coefficient sequences, h0(k) and h1(k); 
see [10]. 

A multiresolution decomposition describes a 
signal in terms of its “local averages” (the terms 
in V0) and its “local details” (the terms in the Wj 
spaces), which are localized in dyadically scaled 
frequency “octaves” by the scale or resolution 
parameter, 2j, and localized spatially by trans-
lation, k. The decomposition may or may not be 
orthogonal; in the nonorthogonal case (which in-
cludes the wavelet bases commonly used in 
image processing), we work with pairs of dual— 
or “biorthogonal”—bases: 

hÃm; Ãn 0 i = �m;n: 

Figure 1. Two-channel mulitrate filter bank 

While multiresolution analysis may still be an un-
familiar construction to many mathematicians, 
Littlewood-Paley theory [13] tells us that wavelet 
bases are actually ubiquitous and that mul-
tiresolution decompositions exist for many of the 
function spaces commonly encountered in analy-
sis. 

There is also a discrete version of multireso-
lution analysis for sampled data. Prior to the dis-
covery of continuous wavelets, multiresolution 
transform methods had been studied in the field 
of digital signal processing under the name of 
multirate filter banks. Filter banks (parallel banks 
of digital convolution operators) provide fast, ef-
fective means of separating a digital signal into 
different frequency components. When the con-
volutional kernels are compactly supported 
(meaning finite supports in the discrete case), this 
frequency separation is accomplished using only 
local computations (as compared to nonlocal 
methods like the discrete-time Fourier trans-
form). 

The analysis half of the digital filter bank 
shown in Figure 1 contains lowpass and highpass 
filters, h0 and h1, followed by decimators, #, to 
divide the input into two frequency subbands. 
Decimation reduces the sampling rate of the fil-
ter outputs by discarding every other sample: 
(# y)(n) =  y(2n), the digital analogue of dilation-
by-2. Note that each subband coefficient, ai(n); 
i = 0;  1, “feels” only a localized portion of the 
input, x(n) , as determined by the support of the 
kernel, hi(n). To put the signal back together, the 
original sampling rate is restored by interpola-
tion, ", which inserts zeros into the subbands 
in place of the decimated samples, followed by 
more filtering and superposition of the sub-
bands. If the filters are selected properly, this 
process produces zero distortion: x̃ = x . 

One of the big discoveries for both the wavelet 
and filter bank theories was that such distortion-
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Figure 2. JPEG-compressed fingerprint image, 0.6 
bits/pixel 

Figure 3. Original fingerprint image 

free filter banks could be formed using the co-
efficient sequences, h0(k) and h1(k), from the 2-
scale dilational equations (1), (2) for a multires-
olution approximation. By cascading (i.e., 
composing) the analysis bank with itself a num-
ber of times, we can form a digital signal de-
composition with dyadic frequency scaling, 
known as a discrete wavelet transform (DWT). The 
synthesis filters, f0 and f1, are given by the 
(time-reversed) analysis filters in the orthogonal 
case, or by the 2-scale coefficients of a dual scal-
ing function and mother wavelet in the biorthog-
onal case. 

The new twist that wavelets bring to filter 
banks is a mathematically rigorous connection 
between digital signal processing performed on 
sampled signals and an ideal analysis (i.e., a 
multiresolution series expansion) that one could 
in principle perform on the original, continuous 
signal. The combination of continuous wavelets 
and their corresponding discrete wavelet trans-
forms provides a continuous/discrete duality 
for filter bank theory analogous to the quanti-
tative and qualitative relationship between 
Fourier series and the discrete Fourier trans-
form, without the restrictions imposed by the use 
of periodic functions. 

Wavelet transforms were also discussed by In-
grid Daubechies in the January 1995 issue of the 
AMS Notices, so for the remainder I’ll concentrate 
here on the story behind the new FBI standard. 
In addition to [10, 23, 20] and the other refer-
ences cited in her article, the reader can find text-
book expositions on the subject in [7, 1, 25, 28, 

27, 14, 19, 26, 18] and compilations of survey 
and research articles in [2, 8, 9, 12, 24, 16, 17]. 

The FBI Fingerprint Standard 
The first image coding algorithm considered by 
the FBI was the image compression standard 
drafted by the International Standards Organi-
zation’s Joint Photographic Experts Group 
(known as “JPEG”) [21]. The JPEG standard is 
based on partitioning a digital image into 8-
pixel by 8-pixel blocks, applying a two-dimen-
sional discrete cosine transform to each block, 
and compressing the output of each 8 � 8 dis-
crete cosine transform. At even moderate com-
pression ratios, however, the JPEG algorithm 
sometimes produces highly objectionable “tiling 
artifacts” resulting from boundary mismatches 
between the quantized low-frequency cosine 
modes in adjacent tiles; see Figure 2. For com-
parison, an uncompressed version of the origi-
nal image and a WSQ-compressed version at the 
same bit rate as the JPEG example, around 0.6 
bits/pixel, are shown in Figures 3 and 4. In ad-
dition to the lack of tiling artifacts in the WSQ 
image, note also the superior preservation of 
fine-scale details in the image, such as the sweat 
pores in the middle of the fingerprint ridges. 
(These are legally admissible points of identifi-
cation!) 

Transform coefficient quantization strate-
gies tend to sacrifice high-frequency signal con-
tent in order to preserve more important low-
frequency information, and if no 
space-frequency localization is imposed on a 
Fourier decomposition, the universal loss of 
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Figure 4. WSQ-compressed fingerprint image, 0.6 
bits/pixel 

high-frequency content due to coefficient quan-
tization would result in objectionable Gibbs ar-
tifacts (known as “ringing” in image processing) 
and excessive smoothing of edges. (Fingerprints 
have a lot of edges.) Some form of tiling or win-
dowing is therefore an unavoidable component 
of any Fourier-based image coding algorithm. Un-
fortunately, the tiling artifacts inherent in JPEG 
image coding are particularly vexatious in the fin-
gerprint application because of the fact that the 
8-pixel tiling frequency mandated by the JPEG 
standard is close to the natural frequency of 
fingerprint ridges in 500 dpi scans (take another 
look at Figure 2). 

Based on testing by the FBI and the UK Home 
Office Police Research Group, it seems that JPEG 
tiling artifacts are unavoidable in fingerprint 
images at compression ratios above around 10:1, 
even with customized JPEG algorithms. More-
over, since these artifacts tend to appear sud-
denly and with high visibility as compression ra-
tios are increased, the JPEG standard is not 
robust with respect to even slight overcom-
pression errors, which can be expected in highly 
automated systems. Tiling artifacts are not only 
visually objectionable, but results obtained by 
Hopper and Preston [15] indicate that they also 
impair the performance of a key end-user for dig-
ital fingerprint images: automated fingerprint 
feature extraction (“minutiae detection”) pro-
grams. These are computer algorithms that score 
prints for automated comparisons by tracing 
out fingerprint ridges and locating ridge endings 
and bifurcations, a process complicated by the 

sharp edges and corners associated with 
tiling artifacts. 

In contrast, decompositions based 
on finitely supported digital filter banks 
achieve simultaneous space-frequency 
localization with no need for window-
ing. Instead of producing tiling artifacts 
at high compression ratios, image com-
pression schemes based on filter bank 
decompositions degrade by losing res-
olution of high-frequency details in the 
image. This type of gradual blurring as 
the compression ratio increases is re-
garded by the FBI as a more graceful re-
sponse to overcompression errors than 
the sudden appearance of pronounced 
tiling artifacts. Moreover, Hopper and 
Preston found that slight amounts of 
blurring do not adversely affect the per-
formance of minutiae-detection pro-
grams. 

Because of the unsatisfactory per-
formance of the JPEG algorithm on fin-
gerprints, the FBI investigated a num-

ber of alternative image coding methods. 
In addition to the JPEG standard, algo-
rithms studied in [15] included a local co-

sine transform and an orthogonal Best-Basis 
wavelet decomposition, both developed at Yale 
University; an octave-scaled, four-level biorthog-
onal wavelet transform/vector quantization al-
gorithm developed at Los Alamos; and a highly 
partitioned biorthogonal wavelet decomposition 
with scalar quantization (WSQ), developed by 
the FBI. 

The local cosine transform algorithm had less 
pronounced tiling artifacts than JPEG but did not 
produce as high a degree of image quality as the 
three wavelet-based methods.The Best-Basis al-
gorithm produced high image quality but took 
significantly longer to encode an image (a fac-
tor of 4 or 5 times longer) than the scalar or vec-
tor quantization algorithms, which produced 
comparably high image quality. In contrast to 
those two methods, which both use a fixed DWT 
decomposition on all images, the Best-Basis 
method constructs an optimal space-frequency 
decomposition (i.e., a “best basis”) that mini-
mizes an information cost functional for each 
individual image; see [28] for details. Incurring 
the additional cost of computing a fully adap-
tive space-frequency decomposition did not yield 
improvements in image quality, however, when 
compared to fixed, application-specific DWT de-
compositions. Similarly, vector quantization 
failed to produce improvements in rate-distor-
tion performance over lower complexity scalar 
quantization. These results suggest that, at least 
for this application, there was little to be gained 
from using techniques more complex than a 
fixed DWT decomposition and adaptive uniform 
scalar quantization. Other experiments by the FBI 
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indicated that there was also little or no advan-
tage to using higher complexity arithmetic cod-
ing techniques versus the relatively simple Huff-
man coding algorithm. 

Based on these findings, the FBI adopted a 
WSQ image coding standard, incorporating some 
of the better features of the Los Alamos 
wavelet/vector quantization algorithm. These 
include the use of symmetric extension methods 
to handle boundary conditions [5, 6] and an op-
timal weighted mean-square error quantizer de-
sign algorithm [3]. The optimal quantizer de-
sign is given by the solution to a nonlinear 
optimization problem subject to a (linear) con-
straint on the overall bit rate and (convex) non-
negativity constraints on the individual bit rates 
used to encode the DWT subbands. This gives 

Because of the 
unsatisfactory 

performance of 
the JPEG 

algorithm on 
fingerprints, 

the FBI 
investigated a 

number of 
alternative 

image coding 
methods. 

the end-user effective control 
over the amount of compres-
sion imposed on an image 
and acts as a “quality knob” 
that can be set to ensure uni-
form quality in the com-
pressed images. For instance, 
the FBI has discovered that 
images produced by older 
live-scan imaging systems 
(devices that scan the live fin-
gertip rather than an inked 
impression on a paper card) 
are more sensitive to quanti-
zation noise than images pro-
duced by newer technology. 
The WSQ algorithm accom-
modates the older systems 
and still maintains high image 
quality standards by having 
them set their “quality knobs” 
to a lower compression ratio 
than newer imaging systems. 

The FBI specification [11] 
allows for the potential use of 
an entire class of different 
encoders; e.g., different 
wavelets or filter banks and 

different quantizer design strategies. The nec-
essary filter coefficients, quantization parame-
ters, and Huffman tables are transmitted as side 
information to allow a universal decoder to re-
construct images encoded by any compliant en-
coder. This will allow for future improvements 
in encoder design. So far, the FBI has approved 
just one encoder, employing a filter bank based 
on symmetric biorthogonal wavelets constructed 
by Cohen, Daubechies, and Feauveau [10]. Be-
cause of their connection to a basis of regular 
wavelets in the continuum limit, wavelet filters 
are particularly well suited for filter bank algo-
rithms with many levels of frequency decom-
position (the FBI standard uses five levels of 

analysis bank cascade in two dimensions, re-
sulting in a 64-band decomposition). The com-
pression target for this first-generation encoder 
is around 0.75 bits/pixel, which corresponds to 
about 15:1 compression on average fingerprint 
images. 

Current effort is centered on implementing 
a compliance-testing program at the National In-
stitute of Standards and Technology for certi-
fying commercial implementations of the stan-
dard. Testing and certification is essential to 
ensure interchangeability of data between dif-
ferent implementations and to maintain con-
sistently high image quality. In the future, we also 
expect digitization of the fingerprint database 
to facilitate advances in automated fingerprint 
classification. This is an area of research that has 
been greatly handicapped in the past by the use 
of paper-based fingerprint records. 

Documents pertaining to the WSQ standard, 
as well as some sample fingerprint images, are 
available via anonymous ftp from Los Alamos, 
IP address ftp.c3.lanl.gov, in the directory 
pub/WSQ; a World-Wide Web link can be 
reached through http://www.c3.lanl.gov/ 
brislawn/main.html. 
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