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Introduction

* Performance of a verification system is summarized
using Receiver Operating Characteristic (ROC) curve

* Performance of a closed-setidentification system is

summarized using Cumulative Match Characteristic
(CMC) curve

e Can the CMC curve be derived from the ROC curve
and vice-versa?
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ROC Curve

* Biometrics samples are compared against each other

* Genuine and impostor scores are generated

* False Match Rate (FMR) and False Non-match Rate
(FNMR) are computed at multiple thresholds

e ROC Curve: True Match Rate versus False Match Rate
* ROC Curve: Aggregate Statistics
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CMC Curve

* Each probe biometric sample is compared againstall
gallery samples

* The resulting scores are sorted and ranked
 Determine the rank at which a true match occurs

* True Positive Identification Rate (TPIR): Probability of
observing the correct identity within the top K ranks

* CMC Curve: Plots TPIR againstranks
* CMC Curve: Rank-based metric
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CMC versus ROC

* [tis reasonable to expecta good ROC curve to be
associated with a good CMC curve and vice-versa
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Predicting CMC from ROC

* The CMC can be predicted from the ROC data
* Bolle et. al. (2005), Hube (2006)

Bolle
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» J. Hube. Using Biometric Verification to Estimate Identification Performance. BSYM 2005
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Predicting CMC from ROC

* But neither model perfectly predicts the empirical
CMC curve

Empirical and Predicted CMC Curves (Left: Fingerprint Scores, Right: Gait Scores)
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ROC versus CMC

* DeCann and Ross (2012) showed that it is possible for
a good ROC curve to be associated with a poor CMC
curve and vice-versa
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Why did CMC prediction models fail?

* Each identity contributes uniquely to
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Genuine Accept Rate

One ROC Curve: Multiple CMC Curves
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Virtual Identities

* Input: Set of genuine and impostor match scores

* Qutput: Virtual identities with differentrank-based
statistics

* Method: “Reassign” match scores to virtual identities
according to the “Doddington’s Zoo” concept

* Sheep: Low FMR and FNMR
* Goats: High FNMR
* Lambs: High FMR
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Reassigning Match Scores

*Set of genuine and impostor match scores

Number of

Virtual Identities
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Sampling Match Scores

* Depending upon “Sheep”, “Goat”, “Lamb” labels

Match Score Distributions and Doddington’s Zoo
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Sampling Rationale

* Genuine Scores: Use the label (“Sheep”, “Goat’,
“Lamb”) to assign genuine match scoresto a virtual
identity

* Impostor Scores: Use the labels of “pairs” of virtual
identities to assign impostor match scores to a virtual
identity
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From Real to Virtual
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Reassighing Genuine Scores

Algorithm 1: Reassigning Genuine Scores

Input: Vector sgen, containing the genuine scores.

Vector v, a set containing the labels of each 1dentity
(e.g., “Sheep”, “Goat”, “Lamb”).

Define: 0, €gen: Scaling parameters.

Output: Matrix S populated with genuine scores.

\\ begin algorithm

Step 1: For each identity, note the assigned label.

Step 2a: Draw a genuine score (without replacement), ¢,

SGen, from within subset s,.,, 4, Where

Srng = (Gen + OGen, 1), if xn = Sheep.

= (0, pGen — OGen), if xn = Goat.

Srng = (0, tgen + 0Gen ), if xXn = Lamb.

Srng
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Reassighing Genuine Scores

Step 2b: If ;.14 is a null set, and s,y = (a, b),
seta =0 -a,b = % and repeat Step 2a.

Step 3a: Draw (NQG) — 1 scores (without replacement)

from Sgen, Within qb T €EGen, -

Step 3b: If less than (]\;G) — 1 scores can be drawn

set €gen = ~<22 and repeat Step 3a.
Step 4: Store the sampled genuine scores in S.
return S

\\ end algorithm
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Reassigning Impostor Scores

Algorithm 2: Reassigning Impostor Scores
Input: Vector Sr.,,p, containing the impostor scores.
Matrix S, where sampled genuine scores are stored (from
Alg. 1) and sampled impostor scores will be stored.
Vector Yy, containing the labels of each i1dentity
(e.g., “Sheep”, “Goat”, “Lamb”).
Crons Scren, Assigned genuine scores for identities n, m.
Define: 0, €rmp: Scaling parameters.
Output: Matrix S populated with genuine and impostor scores.
\\ begin algorithm
Step 1: For all combinations of nand m (n = 1,..., N,
m=mn-+1,...,N), note x, and X.
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Reassigning Impostor Scores

Step 2: Draw an impostor score, ¢ from Sy, wWithin
interval s,.,,4, Where
Srng = (0, min{maz{Scgen }, maz{Scen}}).
if v, = Sheep or Goat, x.,. = Sheep or Goat.
Srng = (0,maz{Shen}),
if v, = Sheep or Goat, x.m, = Lamb.
Srng = (0, maz{Sgen}).
if v, = Lamb, x,, = Sheep or Goat.
Srng = (0,1), if xn = xm = Lamb.
Step 3: If S g 1S anull set, s;ng = (0, 1).
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Reassigning Impostor Scores

Stei) 4a: Draw NZ — 1 scores from s Imp Within @ &£ €1mp.
Step 4b: If less than N& — 1 scores can be drawn

set €7mp = —=£, and repeat Step 4a.
Step 5: Store the sampled impostor scores in S.
return S

\\ end algorithm
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Datasets Used

* Face: WVU Multimodal Dataset
* 240 subjects, 5 Samples / subject
* Match scores computed using VeriLook

* Gait: CASIA B dataset
* 124 subjects, 6 samples / subject
* Match scores computed using Gait Curves algorithm
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Evaluation Criteria

* ROC data: Areaunderneath the ROC (AUC)
* CMC data: Weighted Rank-M strategy
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Generate Virtual Identities

* Generate virtual identities with differentinput
parameters: (% Sheep, % Goats, % Lambs)

* Compute AUC and Rank-M values

Sheep Goat Lambs AUC Rank-M AUC Rank-M
(%) (%) (%) (Face) (Face) (Gait) (Gait)

Same Aggregate Statistics Different Rank Statistics

Note: Increasing the proportion of Goats or Lambs decreases Rank-M performance
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A Closer Look

* ROC and CMC curves for “Original” and “Reassigned”
* (15% Sheep, 10% Goats, 75% Lambs)
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* [tis possible for a single ROC curve to be associated
with multiple CMC curves

* The distribution of “Sheep”, “Goat”, “Lamb” in the
target population results in this phenomenon

* Any ROC-CMC prediction model, should account for
this variability in user performance

* Soft biometric traits are more likely to exhibit this
type of disparity

* Reporting both ROC and CMC curves is recommended
* Note: Closed-setidentification

Project sponsored by ONR
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Reading Material

* B. DeCannand A. Ross, "Relating ROC and CMC
Curves via the Biometric Menagerie," Proc. of 6th
[EEE International Conference on Biometrics: Theory,
Applications and Systems (BTAS), (Washington DC,
USA), September 2013

* B. Decann and A. Ross, "Can a Poor Verification
System be a Good Identification System? A
Preliminary Study,” Proc. of IEEE International
Workshop on Information Forensics and Security

(WIFS), (Tenerife, Spain), December 2012
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