Communications Technology Laboratory Overview Marla Dowell, Director

Mission: conduct and facilitate leading edge R&D for both metrology and standards development to accelerate the development and deployment of advanced communication systems

National Institute of Standards and Technology U.S. Department of Commerce

NIST Laboratory Programs

CTL Organization Structure

Established FY15 with proceeds from NIST and the Public Safety Trust Fund

Public Safety Communication Research

Supports development of Nationwide Public Safety Broadband Network

Melissa Midzor

National Advanced Spectrum and Communications Test Network (NASCTN)

neutral body to address spectrumsharing challenges among commercial and federal users

Mike Janezic

RF Technology

Fundamental RF metrology research and standards to characterize both integrated circuits and systems, wired and wireless.

Wireless Networks

theoretical and experimental research in wireless networks, protocols, digital communication systems and components

CTL Priority Areas

Fundamental Metrology for Communications

2

4

1 Public Safety

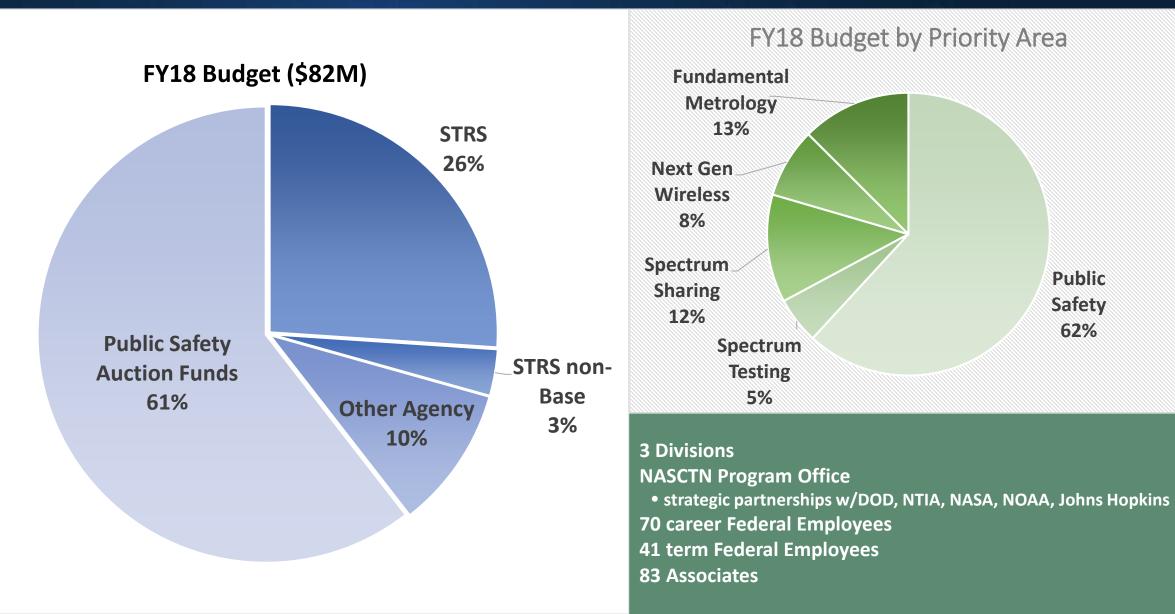
3

To support standards research, development, test, and evaluation for first responder communications.

Trusted Spectrum Testing

To coordinate and provide robust test processes, validated data, and trusted analysis to improve spectrum-sharing agreements, and inform future spectrum policy and regulations.

Spectrum Sharing


To advance measurement science infrastructure to investigate, quantify, and mitigate the many factors that impact the ability, and inability, of disparate wireless communications systems to coexist and operate as intended.

Next Generation Wireless

To advance the measurement science infrastructure for next generation wireless communication systems, e.g., mmWave radio channels.

CTL Priority Areas and Budget

Public Safety Overview

GOAL: Transform public safety operational capabilities and contribute a measurable impact on public safety's ability to save lives and property. These 5 areas show how PSCR is best positioned to deliver value to the public safety community:

- 1. Increasing Research Capacity
- 2. Disruptive Approaches & Technology
- 3. Standards
- 4. Products
- 5. Public Safety Methods

SUC •

SUCCESSES

- New capabilities: new NIST labs, additional 40 NIST staff, partnership with FirstNet.
- 4 grant programs and 5 Prize Challenges totaling over \$56M in funding.

- PSCR Annual Stakeholder Conference brings over
 500 stakeholders from industry, academia, and
 public safety
- > 150 organizations receive funding through Prize
 Challenges, grants and cooperative agreements.

Public Safety Innovation Accelerator Program (PSIAP)

2018 PSIAP User Interface/User Experience (UI/UX) Grant Recipients

NIST

CONTEXT

Need for external R&D effort in Public Safety:

Location-based services, Mission Critical Voice, Data Analytics, User Interface/User Experience, Broadband transition

IMPACT

In 3 years, established partnerships with over 150 private and public sector organizations through prize challenges, grants, and cooperative agreements.

FUTURE

Increase external research capacity and fast track tech transfer to shorten the time it takes to get these technologies into the hands of public safety.

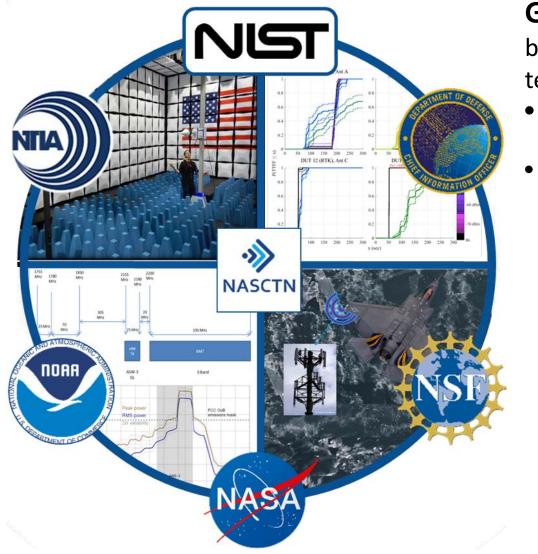
Public Safety User Interface Research

NIST

CONTEXT

User Interface research portfolio was created to ensure public safety device interfaces are designed around the operational needs of the end users.

IMPACT


NIST efforts have led to the development of proof of concept Heads Up Displays and engagement with 19 external organizations.

FUTURE

Expand open source library of scenarios and tasks for rapid prototyping and development of new user interfaces for public safety through strategic partnerships.

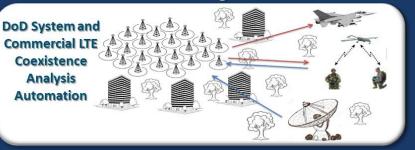
Trusted Spectrum Testing Overview

GOAL: Increase Commercial and Federal access to spectrum by accelerating the design and deployment of spectrum-sharing technologies by:

- Providing a neutral, trusted forum to evaluate spectrum-sharing technologies (NASCTN)
- Developing independent test methodologies and providing validated data.

SUCCESSES

- 4 projects uniting private and public sectors
- Enabled spectrum sharing test facilites
- Provide critical data to DoD SST&D program for early entry into the AWS-3 auctioned bands


- National network of Federal, academic, and commercial test facilities (DoD, NTIA, NOAA, NASA, and NSF).
- Facilities include NBIT, Fort Story VI, Pt Loma CA, MITRE, John Hopkins University, and Edwards AFB.

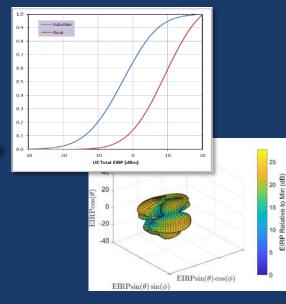
Trusted Spectrum Testing: Aggregate AWS-3 LTE Emissions

SST&D Program

CONTEXT

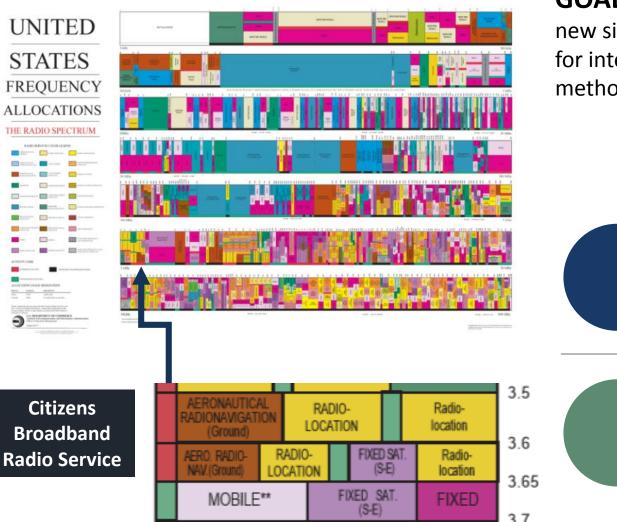
NIST

New metrology required to characterize cumulative and complex interactions for cell phone emissions.


IMPACT

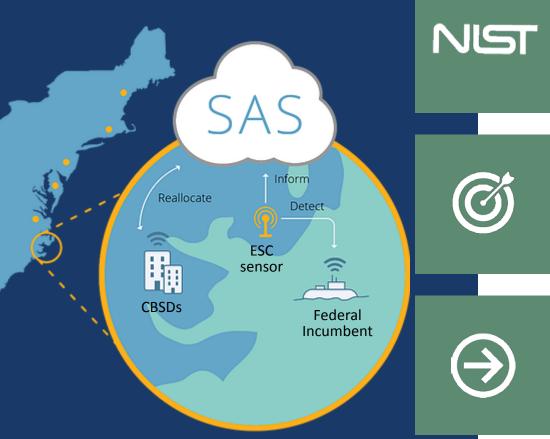
Informing interference models used by DoD for expedited and expanded entry of commercial deployments into the 1755-1780 MHz band

FUTURE


NASCTN is working with agencies to identify potential key measurements in advance of the 2024 Spectrum auction.

Spectrum Sharing Overview

GOAL: Expand availability of wireless spectrum by developing new signal detection and classification methods, statistical models for interference and spectrum occupancy, and measurement methods and standards for wireless coexistence.


SUCCESSES

- Improved signal detection and classification using machine learning techniques.
- WINNF adoption of test procedures to certify commercial wireless systems in the CBRS band.
- FDA adoption of standards for wireless healthcare devices.

- Standards Organizations (IEEE, WINNF)
- Operators (AT&T, Verizon, Federated Wireless)
- Equipment vendors (Nokia, Ericsson, Sony, Motorola)
- Chipset manufacturers (Intel, Qualcomm)

Spectrum Sharing – *Citizens Broadband Radio Service*

"The efforts of our company, NIST and the other members of the WINNF SSC to establish standards, testing and certification for spectrum sharing are setting the stage for improving wireless service indoors, expanding broadband services to rural areas, and providing private wireless capabilities for industrial users. It's an **outstanding** example of publicprivate collaboration." – Kurt Schaubach, CTO, **Federated Wireless**

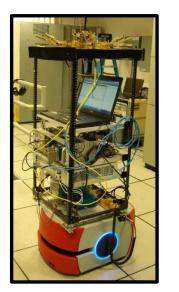
Source: https://www.cbrsalliance.org/blog

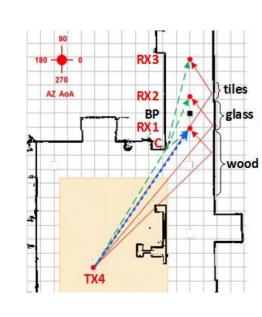
CONTEXT

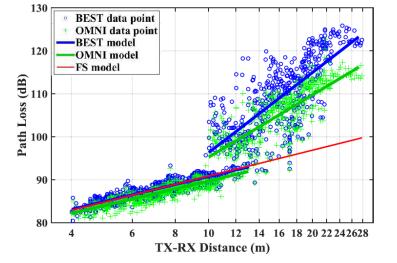
The Citizens Broadband Radio Service makes 150 MHz of new spectrum available for commercial use on a shared basis with the federal government.

IMPACT

NIST developed test procedures and a reference implementation to help regulators certify commercial systems mediating access to this RF band.


FUTURE


Research in radar signal detection, sensor deployment for efficient dynamic protection coverage.



Next Generation Wireless Overview

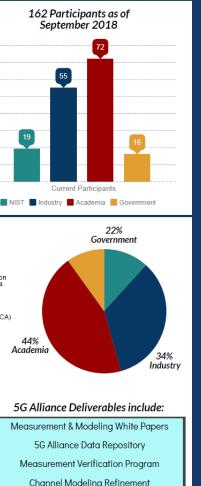
GOAL: Accelerate the development and use of accurate measurements, system calibrations, and models in support of next generation wireless communications.

SUCCESSES

- Construction of channel sounding systems
- Development of channel models adopted by IEEE
- Establishment of 5G mmWave Channel Model Alliance & data repository

- Equipment vendors (Samsung, Keysight), operators (AT&T, Verizon, Sprint), chipset manufacturers (Intel, Qualcomm)
- 5G mmWave Channel Model Alliance members
- Telecom Infro Project members (e.g. Facebook, Deutsche Telecom)

Next Generation Wireless –


5G mmWave Channel Model Alliance

The 5G mmWave Channel Model Alliance formally launched in July 2015. Below is a summary of the organization's increase in participatión and key milestónes over since 2015.

For the design, evaluation and deployment of the future 5G networks, it is essential to have a 5G channel model that is well supported by diverse measurements across different frequency bands, deployment scenarios, as well as geographical areas. The 5G channel alliance led by NIST has been instrumental in inspiring continued contributions from top experts in government, academia, as well as industry toward this important goal over the last couple years."

– Charlie Zhang, Vice President, Samsung **Research America**

10. Missouri Sa I 11. Morgan State University 12. National Institute of Technology (India) 13. New Jersey Institute of Technology 14. New York University Wireless 15. North Carolina State University 16. Pennsylvania State University 17. Polytechnic University of Leina (Portugal) 18. Portland State University	49. US Navy 50. Communications Research Centre Industry 51. Alicatei-Lucent 52. Anrits 53. AT&T 54. Azimuth Systems	44% Academia
19. Princeton 20. Stanford University 21. Stevens Institute of Technology 22. Technische Universität Dresden 23. Technische Universität Ilmenau 24. Tutts University 25. UC Santa Barbara 26. University at Buffalo	94. Azimum Systems 55. Ball Acrospace 56. Cable Labs 57. Dow 58. DuPont 59. Echostar 60. Huawei Technologies 61. Huawei Technologies 62. IEEE	5G Alliance Deliverables include
27. University of British Columbia 28. University of California, Berkeley	63. Intel 64. InterDigital	Measurement & Modeling White Pape
29. University of California, Irvine 30. University of California, San Diego 31. University of California, Santa Barbara	65. Keysight 66. National Instruments 67. Nokia	5G Alliance Data Repository
 University of Chicago University of Colorado, Boulder University of Durham (UK) 	68. octoScope 69. Qualcomm 70. Rohde & Schwarz	Measurement Verification Program
35. University of New Mexico 36. University of South Carolina 37. University of Southern California	71. RT Logic 72. Samsung 73. Siradel	Channel Modeling Refinement
38. University of Texas 39. University of Vermont 40. University of Wisconsin	75. Shadel 75. Spirent 76. Xllinx	Measurement Campaign Support
Contact Marc Leh (mleh@corneralli:	Scenario & Parameter Description	

NIST

CONTEXT

Accurate channel propagation characterization is key to 5G and beyond development, standardization and deployment.

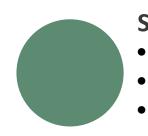
IMPACT

- Channel sounders at 28, 60, & 83 GHz
- Contributions to standards and modeling tool development (Mathworks/WLAN Toolbox).

FUTURE

- Channel sounders for phasedarrays.
- Development of 28 GHz urban canyon channel model (NIST, NYU, USC, Ilmneau, UBC, CRC, NCSU, Durham).

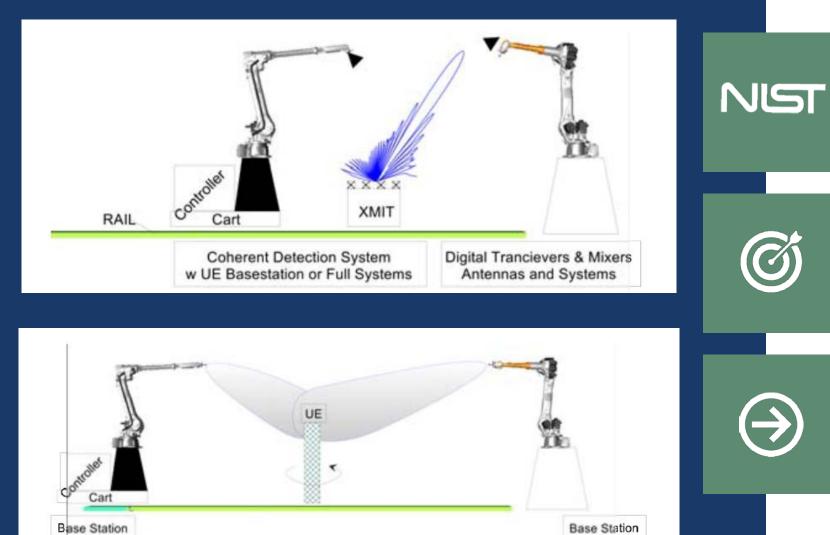
Fundamental Metrology for Communications



NIST Large Antenna Positioning System

GOAL: Provide state-of-the-art radio-frequency metrology to enable the development and commercialization of a broad range of RF electronics and wireless communications technologies.

SUCCESSES


- First over-the-air test method for physically-large wireless systems (adopted by CTIA)
- Traceability for signal generation and measurement
- New Large Antenna Positioning System
- New NIST Broadband Interoperability Test Network

- End Users
- Test Equipment Manufacturers
- Federal agencies (DARPA, DoD, FCC, NTIA, NIJ, DHS, FDA)
- Standards organizations (CTIA, ANSI, IEEE)

Fundamental Metrology for Communications: Advanced Antenna Metrology NIST

Emulator

Emulator

CONTEXT

Next-generation communication systems will include beamforming antennas that can steer radiated signals to the desired location

IMPACT

- Robotics-based antenna test methods developed by NIST now adopted by industry (e.g. Boeing)
- NIST awarded two patents related to new antenna measurement capability
 FUTURE

New methods for measuring integrated antennas, which cannot be removed from a communications system, must be developed

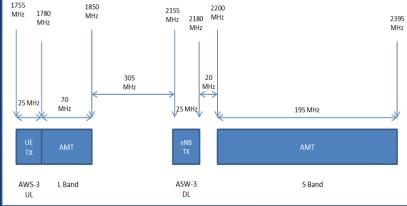
CTL History

Public Safety		LBS Roadmap	Analytics Roadmap	 VR Dev Envi UAV (PSIAP 1 Awarded (UI/UX Roadmap 	Challenge	VR Dev EnviroPSIAP P6 Secur		Library	
NASCTN		NASCTN formed		Rec	em Noise on Integrated eivers report released 3.5 GHz Rad GPS report released (E	ar report Enissic	t-of-Band on in the AWS-3		n Deadline
Next Gen Wireless	> (5G Channe Alliance Lau CROMMA Facility			 Large Antenna 5G Channel Mode Alliance reaches 150 members 	Positioning System Facilit I	y ► DC to Wavef	THz Calibrated forms	Funds Obligation
Spectrum Sharing			Coexis	C63.27 Wireless Stence Standard Interoperability Tes		Band Radio Service Mod 3.5 GHz 	els 2 Machine Learning ⁻	Test Procedures	Fund
Investment	FY 2015		FY 2017 Suction Funds ► \$200M Auction F		FY 2019 construction complete \$50M Prize Challeng	FY 2020 :e BPA	FY 2021 Preparation Transition	FY 2022	ic

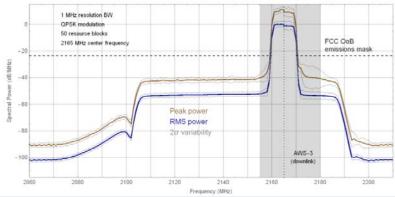
National Institute of **Standards and Technology** U.S. Department of Commerce

STAY IN TOUCH

CONTACT US



Working with NIST

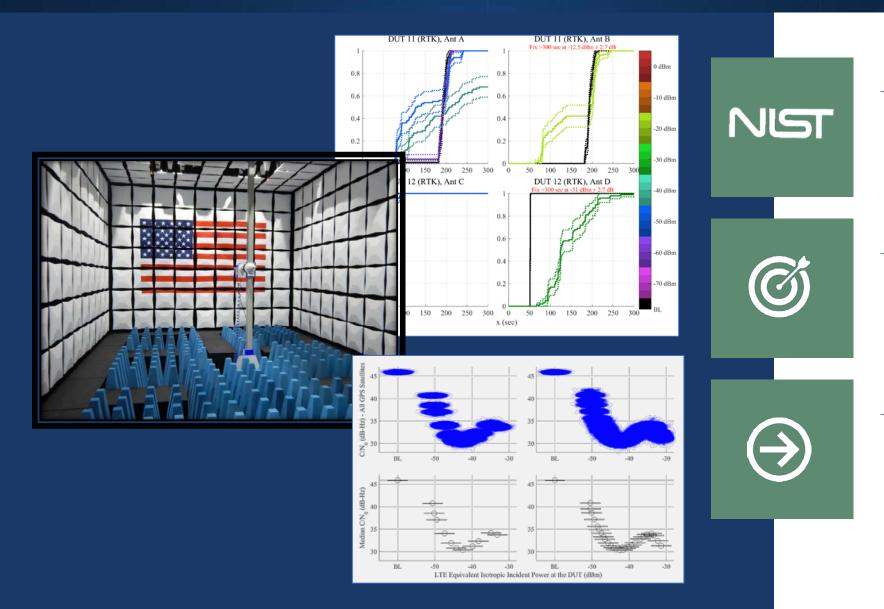

	NIST Communication Technology Laboratory	NIST				
	Informal collaborations: visiting scientists, sabbaticals, joint peer- reviewed papers,	Manufacturing Extension Partnership: nationwide network of resources for manufacturing and business expertise for U.S. companies Colorado Association for Manufacturing and Technology: <u>http://newcamt.camt.com/</u>				
	Cooperative Research and Development Agreements (CRADAs): formal partnership to facilitate work with U.S. companies, academia, and other organizations on joint projects.					
	Use of Designated Facilities: NIST has several unique and valuable laboratory facilities available for use by U.S. organizations for both					
	proprietary and non-proprietary research. Access to these designated facilities is generally provided on a first-come, first-served cost-reimbursable basis.	TECHNOLOGY PARTNERSHIPS OFFICE STRESS				
	<u>marla.dowell@nist.gov</u> (303) 497-7455	General inquiries about patents, licensing, and NIST Small Business Innovation Research Program				
X						
	National Institute of Standards and Technology U.S. Department of Commerce	CTL Communications Technology Laboratory				

Trusted Spectrum Testing: LTE Out-of-Band Emission in the AWS-3 Band

CONTEXT

Complex measurement problem to identify LTE impact on DoD Test ranges due to spectrum auction.

IMPACT


Enabled DoD to identify specific filters to mitigate impact, maximize performance at select ranges.

FUTURE

NASCTN is working with agencies to identify potential key measurements in advance of the 2024 Spectrum auction.

Trusted Spectrum Testing: LTE Impacts on GPS L1

CONTEXT

A trusted neutral party was required to investigate and measure effects of LTE signals on GPS receivers operating in nearby frequency bands.

IMPACT

Final Policy decisions by regulators and Federal Agencies are currently in progress, utilizing this test data.

FUTURE

NASCTN is working with agencies to identify potential key measurements in advance of the 2024 Spectrum auction.

rnal	Challenges					nallenge HUD Challenge BPA > >	A (3 yrs) LBS ASAPS ➢ VR Challenge 2	×	VR Challenge 3	
Exter	Strugger > ASAPS > VR Challenge 2 > VR Challenge 3 Strugger > PSIAP 1 Awarded (3 yrs) > PSIAP P2 UI Awarded (2 yrs) > Consortium Grail PSIAP P4 MCV QoE Awarded (3 yrs) > PSIAP P4 MCV QoE Awarded (3 yrs) > PSIAP P5 Test Equipment (3 yrs) PSIAP P5 Test Equipment (3 yrs) > PSIAP P6 Security (2 yrs)								Consortium Grants	Funds Obligation Deadline
Internal			LBS Roadmap	Analytics Roadmap	 VR Dev Envir MCV UI/UX Roadmap 		 VR Dev Enviro 2 MCV KPI 3 	3 >	MCV KPI 4 Online Library	Funds (
Program			≻ \$100	DM ➤ \$200M		ab construction complet OIG Audit \$50M BPA Launch			Preparation for Progra Transition	ammatic
		FY 2015	FY 2016	FY 2017	FY 2018	FY 2019	FY 2020	FY 2021	FY 202	2

CTL SWOT

STRENGTHS

- Strong research programs tied to external partners
- Cross-cutting strategic focus areas uniting laboratory programs
- Strong ties to other NIST Labs

WEAKNESSES

- Strong stakeholder focus impacts exploratory research efforts
- Administrative delays impact timely mission execution; only 48 months remain on PSCR auction funds

OPPORTUNITIES

- Introduce measurements into spectrum auction decision process
- Industrial Internet of Things (CTL/EL/ITL)
- Optical communications (CTL/ITL)

THREATS

- Loss of spectrum auction funds → too small to succeed
- Other agencies encroaching on NIST mission
- Recruiting staff with communications expertise

CTL Leadership and Budget

Marla Dowell, CTL Director Melissa Midzor, NASCTN Program Manager Dereck Orr, Public Safety Communications Research Division Michael Janezic, Radio Frequency Technology Division Nada Golmie, Wireless Technology Division

Brian Copello, Executive Officer

leadership with pictures Budget pie chart – emphasis No base funds for public safety Supports other NIST labs – EL, ITL, PML Supports external organizations

Total budget pie chart Public safety – prize challenges, NIST CTL, NIST other

No workforce numbers

STRS Base	STRS non- Base	STRS To	STRS Total 24,102		RA			Other WCF	OU Total	
21,394	2,708	24,10			8,324		691	292	82,410	
Division Name		STRS Budget (\$K)	Tota Budg (\$K)	et	Federa worke			Foreigr Assoc.		
HQ		868	8	368	10		3	2	15	
NASCTN		1,448	4,3	48	5		6	0	11	
Public Safet	ty	0	50,4	18	35		12	0	47	
RF Technology		15,339	17,431		38	40		4	82	
Wireless Networks		6,447	9,345		21	3		13	37	
Total		24,102	82,4	10	109		64	19	192	

