Building Information Modeling: A Platform For Global AEC Change

Robert Middlebrooks, AIA Autodesk Strategic Industry Relations tiny.cc/businessofbim

Image courtesy of CCDI Group.

To improve the quality of the built environment and the collaborative process by which it is created.

some of today's most inspiring building projects.

Mega-Trends

Architecture

MEP Engineering

Construction

Crossing the Chasm (Geoffrey Moore)

Autodesk

3 Phases of BIM Engagement

Help me implement BIM.

Why should I invest?

What is **BIM**?

BIM Adoption worldwide

UK – 2010 – major acceleration - National BIM Survey¹

- 31% of construction professionals are using BIM (vs 13% in 2010)
- 78% say BIM is "Future of Project Innovation"
- BuildingSMART ME 2010²
 - BIM penetration 25%
 - Recognition of BIM value connected to error reduction, improved quality control, improved productivity
 - Need to develop competency relative to Western Europe, US-
- Architosh BIM survey 2010³
 - Over 60% report BIM adoption
- World Market Intelligence⁴
 - 40% contractors and project developers anticipate increased profitability due to BIM

¹ http://www.thenbs.com/corporate/press/12-02-08.asp and

http://www.scribd.com/doc/76221465/BIM-Research-Report-March-2011

² http://www.ameinfo.com/251742.htm

³ http://architosh.com/2010/03/architosh-announces-2010-bim-survey-repor4 t/

⁴ http://www.marketresearch.com/World-Market-Intelligence-v3764/Building-Information-Modeling-Global-Construction-6805143/

China

- Strong BIM awareness
- Growing adoption across major customers
- Gov't researching BIM & IPD
- China BIM Standards (CBIMS) phase 1 published
- BIM Services businesses by leading partners & DIs
- Lack of BIM-experienced workforce

Japan

- BIM reached broader acceptance in 2009
- 80% are aware of BIM; 50% know what it is
- Architects leading demand for BIM
- Much slower adoption than any major market

South & Central Europe

- 60% of market not using BIM
- 14% creating and analyzing models
- In 2 years, BIM will be used on most projects
- Lack of time to evaluate is largest obstacle

2010 Europe vs. North America

Years Using **BIM**

Source: McGraw-Hill Construction, 2010.

_ _ _ _ _

Autodesk

2010 Western Europe Adoption

Autodesk

2010 Europe Adoption

BIM Usage on Projects

Source: McGraw-Hill Construction, 2010

Innovation Adoption in the U.S.

Use of BIM for U.S. AEC Firms, 2008-2011

U.S. McGraw Hill SmartMarket Reports, 2008 & 2009

U.S. BIM Adoption Timeline – Key Events

Cumulative Seat Adoption Curve

Percent of Current & Future Projects Involving BIM

Source: McGraw Hill Construction October 2008 BIM Survey

Relative Importance of internal benefit		Low	Mod	High
Marketing new business		22%	27%	49%
Overall better construction project outcomes		25%	25%	48%
Reduced errors and omissions in construction documents	4%	21%	28%	47%
Offering new services		24%	27%	47%
Reducing rework		25%	27%	45%
Maintaining repeat business with past clients	5%	31%	28%	36%
Improving knowledge about building in staff		33%	30%	31%
Reducing cycle time for specific workflows		34%	32%	31%
Reducing overall project duration		41%	29%	27%
Reducing construction cost		37%	32%	25%
Increasing profits		46%	71%	21%
Recruiting, retaining staff		43%	30%	21%
Fewer claims/ litigation		40%	26%	20%

Young, Jones, Bernstein, Gudgel (2009) "The Business Value of BIM: Getting Building Information Modeling to the Bottom Line", McGraw Hill Construction.

Link between BIM Benefits and ROI	Low	High
Better multi-party communication and understanding from 3D visualization	5%	77%
Improved process outcomes, such as fewer RFIs and field coordination problems	6%	74%
Improved productivity of personnel	7%	73%
Increased prefabrication	9% None/Low High/Very High	71%
Positive impact on marketing	9%	71%
Reduced cycle time for project activities and delivery	9%	66%
Lower project cost	12%	57%
Improved jobsite safety	20%	50%
Positive impact on sustainability	21%	44%
Positive impact on recruiting / retaining staff	22%	43%
Faster plan approval and permits Young, Jones, Bernstein, Gudgel (2009) "The Business Value of BIM: Getting Building Information Modeling to the Bottom Line", McGraw Hill C	26%	36%

Pre-design	Spatial, functional investigation	Conceptual Energy Analysis from early model proposals.		
	Considerations of site, context, site, zoning and codes			
Schematic	Initial proposal resolving issues of space requirements and form	Use of Visualization for stakeholder engagement and approvals		
Design	Preliminary approach to massing and concept, materials and finishes			
Design	Detailed design, documents for client, regulatory approvals	Integration of collaborator models		
Development	Focus on architectural systems (wall, floor, ceiling, envelope), structural, mechanical systems, electrical, lighting, fire protection, interior finishes, materials, site	Enhanced understanding of design, informed decision-making. Improved coordination.		
Construction	Site preparation, grading, demolition	Clash identification, early resolution which reduces issues in the field. Opportunity for more accurate estimates from model data.		
Documents,	Specifications – systems, materials			
Detailing	Structural – components sizing, connections			
	System specifications Coordination, review of details and	Model increases understanding, reduces RFIs.		
Construction	materials			
Administra-	Respond to requests for information,			
tion	Construction Sequencing	construction phasing, materials order and state of completion.		

BIM Benchmark Overview of Arch Universities and BIM

 BIM in theoretical courses along with hands-on applied design studios are optimal

REPRESENTATION: How is the project created, documented and transmitted?

ANALYSIS AND SIMULATION: How is the project optimized for greatest effectiveness?

COLLABORATION: How does the project team work together?

REALIZATION: How is design information transformed into a constructed project?

Collaborative Project Delivery (IPD)

Involve all team members in design meetings, including contractors.

Institute building information modeling.

Facilitate collaboration

Set up contract mechanisms that enable open collaboration.

Minimize paperbased processes, and collaborate digitally.

Check for and manage interferences between trades, digitally.

Create a culture of trust and sharing.

Communicate design ideas using 3D visualization to keep everyone aligned.

Example: Early Sustainable Design Decisions

Sustainable Buildings Lifecycle, Technology, Maturity

Autodesk

Sustainable Building Solutions

Autodesk[®] Revit[®] Architecture Sun path simulation and cloud-based conceptual energy analysis*

Autodesk[®] Revit[®] MEP

Integrated heating and cooling load calculations and conceptual energy analysis* as a foundation for engineering-driven calculations

Autodesk[®] Revit[®] Structure

Analyze design alternatives and optimize the structure to minimize material use and waste

Autodesk[®] 3ds Max[®] Design Natural and artificial daylighting simulation Autodesk[®] Navisworks[®] Products Model aggregation and project simulation help identify wasteful conflicts and errors

Autodesk® ImageModeler™ 2009

Helps capture existing conditions for rapid energy modeling of existing buildings.

Autodesk[®] Green Building Studio

Cloud based whole building energy analysis

Autodesk[®] Project Vasari

Building performance analysis in a conceptual modeling tool

Autodesk[®] Ecotect[®] Analysis

Interactive, visual tools to study the impact of solar radiation, shading, and daylighting

Autodesk[®] SEEK

Search for building product materials by environmental attributes such as insulation value and recycled content

*Web-based analysis is available to Autodesk Subscription customers of Autodesk® Revit® Architecture and Autodesk® Revit® MEP software during the term of their Subscription.

Autodesk

Business Value of BIM

Macro-Economic change

Shifting demographics

New Assets, new Models

Data explosion

Improved decision-making

Conflict reduction

Faster delivery

Autodesk®