

Non-Destructive Compositional Metrology of NAND Memory and Emerging Non-Volatile Memories

Olivier Dulac¹, Anna Meura¹, Anne-Sophie Robbes¹, Mona Moret¹, Ricardo Sousa², Loan-Lucian Prejbeanu² and David J. Larson¹ ¹CAMECA, 29 quai des Grésillons, 92622 Gennevilliers Cedex, France ²SPINTECH, UMR 8191, 17 rue des Martyrs, Bat. 10-05, 38 054 Grenoble, France

Compositional Metrology by LEXES

Possibility to measure all elements heavier than Be Dopants and / or main matrix elements

NAND

Hf and AIO_3 layers :

- very low thickness
- buried under a Titanium nitride

Emerging non volatile memories characterization

 \rightarrow During PRAM manufacturing it's very challenging to :

- control the stack composition

- monitor the amount of incorporated nitrogen used to adjust the crystallization temperature

					Thickness	
Wafer	Ge at%	Sb at%	Te at%	N at%	(Á)	RSD thickness
1	19.95	19.826	44.9114	15.3128	736.92	0.88
2	27.08	24.875	48.048	N/A	686.76	0.32

LEXES is able to **detect and monitor** the amount of Nitrogen inside the stack.

STT RAM

Ta 10.0Å
FeCo ₈ B ₂₀ 21.0Å
Mg 15.9Å
OxNat 10s
Mg 5.0Å
FeCo ₈ B ₂₀ 21Å
Ta 10.0Å
Pt 20.0Å

 \rightarrow For STT RAM manufacturing it's very challenging to: - control FeCo₈B₂₀ and Mg OxNat top layers - control the stack composition

	Impact Energy	Precision	Non-Uniformity
Ta Avrg. Sgn (top layer)	2keV	1.66%	19.71%
Fe Avrg. Sgn	2keV	1.27%	18.80%
Co Avrg. Sgn	2keV	2.06%	4.80%
Mg Avrg. Sgn	3keV	0.20%	4.31%
Ta Avrg. Sgn (all stack)	4keV	0.37%	6.05%
Pt Avrg. Sgn	4.5keV	0.40%	4.04%

LEXES detect can and quantify all the elements of the stack with quite good repeatability. LEXES can measure the **non-**

uniformity over the wafer for all the elements.

Tput \approx 4.4 wafers/hr (9pts)

FeFET

The replacement of Zr onto the Ti position in the perovskite matrices enhances the piezoelectricity. The ratio Zr/Ti is therefore a crucial parameter to control the electrical properties of the circuit.

 \rightarrow For FeFET manufacturing, it's very hard to control the target ratio Zr/Ti and the film thickness.

	Detected X-Ray	Impact Energy	Crystal	Precision
Pb	Pb Ma 2345eV	6.5KeV	LPET	0.19%
Ti	Ti Ka 4508eV	6.5KeV	LPET	0.21%
Zr	Zr La 2042eV	4KeV	LTAP	0.36%
0	O Ka 525eV	2KeV	LPC1	0.35%

Composition variation from center to edge on 200mm wafer of PZr_{0.76}Ti_{0.24}O₃

performs LEXES a **perfect linearity** with the ratio Zr/Ti in the liquid flow during the film growth.

LEXES detects the non-uniformity of thin film composition => help to the predict final electrical properties variation.

Frontiers of Characterization and Metrology for Nanoelectronics, Dresden, April 2015

