Towards an Iris Device Qualification Test

Work Supported by the DHS Science and Technology Division

By
Dan Potter
Scitor Corporation

March 6, 2012

Why Develop a Qualification Test?

- Due diligence tool for selecting iris image collection devices for consideration in US Government applications
 - Goal: Unbiased Comparative Metrics
 - Inter-device (What is the best device for a given application?)
 - Intra-device versus application (what application is best suited for a given device?)

 Farther in the Future: Preliminary step for something to offer to ISO standards body for commercial industry

Why not use established image quality targets?

- Standard targets use information not representative of optical properties of eye
- Iris capture devices may require the presentation of face/periocular features, as well as features specific to the eye such as specular reflections from the cornea

Primary Specular Reflection

Face/periocular features

Iris border features and texture

Target Requirements

- Be able to capture iris images in the native operational mode of the tested device ("faceness"+"eyeness")
 - Without bias for or against a particular device
- Succinctly measure performance relevant to iris biometrics
 - Challenge lies in controlling and/or adequately sampling the many covariates.

Optical Properties of Eye/Iris: Albedo

Brown Eye

Blue Eye

IBPC Conference: March 6, 2012

Observed Optical Properties of the iris

Observed Optical Properties of the Iris: Spatially Varying Albedo

Signal-to-Noise Ratio can be expressed as a function of device variables (assuming photon noise):

$$SNR_{850nm} \sim 10 \, \left(\frac{\gamma_a}{0.15}\right) \left(\frac{F_i}{1mW/cm^2}\right)^{1/2} \left(\frac{a}{0.12}\right)^{1/2} \left(\frac{Q}{0.1}\right)^{1/2} \left(\frac{t}{25msec}\right)^{1/2} \, \left(\frac{\ell}{0.5mm}\right) \left(\frac{d}{50cm}\right) \left(\frac{D}{50cm}\right)^{-1}$$

Iris Texture

$$a_{low} = a(1 - \frac{\gamma_a}{2})$$

$$\Delta a = a_{high} - a_{low} = \gamma_a a$$

$$a_{high} = a(1 + \frac{\gamma_a}{2})$$

Optical properties of eye/iris: Specular Reflection

Fresnel Reflection Coefficients: Estimate for Percent reflected off corneal

$$R_{\perp} = \left(\frac{n_1 \cos \theta_i - n_2 \cos \theta_t}{n_1 \cos \theta_i + n_2 \cos \theta_t}\right)^2$$

$$R_{\parallel} = \left(\frac{n_1 \cos \theta_t - n_2 \cos \theta_i}{n_1 \cos \theta_t + n_2 \cos \theta_i}\right)^2$$

$$< R > = \left(\frac{R_{\perp} + R_{\parallel}}{2}\right)$$

 θ_{i} Iris 1.406 Teus 1.386 $n_1 = 1.00$ 1.336 (AIR) r_{back}=5.6mm 1.336 Cornea Iris r_{front}=7.3mm **Radius of Curvature Indices of Refraction**

IBPC Conference: March 6, 2012

Cornea surface

- Reflects ~2-3% of incident NIR light
- Fish-eye de-magnification
- **Polarized**

Iris surface

- •Scatters ~10-16% of incident NIR Light
- •Lambertian?

IBPC Conference: March 6, 2012

Specular Reflections

Target prototypes

- Leverage methods used in making Prosthetic eyes and Hollywood Special effect
 - use casting process with Polymethyl Methacrylate (PMMA)
- Use high DPI printer to print out any target pattern, embed in 2 part casting mold, and polish...

IBPC Conference: March 6, 2012

Candidate Metrics Considered

- Spatial Frequency Response (Modulation Transfer function)
- Linearity of detector response
- Specular Reflection Noise From Corneal Surface
- Contrast SNR Vs. spatial Frequency
 - Border Contrast
 - Iris texture
- Matching Algorithm-Based Intercomparison
 - Degradations specific to a matching algorithm

Target Pattern Selection

Goal to consolidate purposes into package which can pass device collection criteria

Target Patterns Considered

Albedo Calibration of Printer

Creation Greyscale

Printer Ink Albedo Calibrated Greyscale (low dynamic range!)

Method for MTF extraction

ISO 12233 slanted edge test

Analysis Method: MTF

Both Edge and Sin Modulation Information Convolved with same PSF

ISO 12233 Edge method = Blue Direct Modulation method = Green

IBPC Conference: March 6, 2012

Analysis Method: Detector Linearity

- Target has albedo calibrated graded steps
- Fit line to model, statistical analysis on errors
- Check systematics
 (specular reflections) by
 rotating target via test
 protocol

Analysis Method: Contrast SNR

- Establish Distribution Type (Gaussian)
- Calculate Standard Deviation versus cell size and albedo
- Propagate through definition of feature function (ridge, slope, spatial freq.)
- Use (hopefully) Gaussian Statistics for simplicity (i.e. 1,2,3.. Sigma Vs. feature type)

Analysis Method: Specular Reflection Noise

1550nm multispectral image (Albedo of iris~2%)

- Use a dark, homogeneous low albedo
- Calibrate reflectivity of surface

 Need to do this still for corneal reflection, and target
- Control periocular Scene
 - -3-D scattering parameters!
 - (could get complicated)

Analysis Method (Algo explicit Feedback)

- If the image can pass the algorithm segmenter, one can use encoding/matching as a metric with a controlled pattern.
- Broadband Encoder Response

Illustrative example: Broadband Encoder Response

Psuedo-Polar Normaized

Encoded signal (3 Haar filters varying Spatial Freq. to make cube)

Illustrated Example: Broadband Encoder Response

Normalized Image (PRISTINE)

Normalized Image (Noisy)

High Frequency

Middle Frequency

Template (PRISTINE)

Template (Noisy)

XOR RESULT

Influence of photon Noise (con't)

IBPC Conference: March 6, 2012

Low Frequency

Current Status

- Have calibrated multiple targets in albedo, and spatial frequency response (losses from printer)
- Have working "High Level" algorithms to process data to and produce output metrics mentioned in this presentation
- Have collected using 3 devices

Captures with Real Devices – D1

Captures with Real Devices – D2

Captures with Real Devices – D3

- Needs to be tied to matching accuracy
- Application Dependent?
- Guidance from ISO standards and NIST studies?

work ahead immediate future

- Identifying target manufacturers
- Calibration of specular reflection –Realistic 3-D Face
 Scene
- Iterative improvements on metrics

Acknowledgements

Work Supported by **DHS S&T...**

IDQT Development roadmap

