

Oxford Chemistry

Oxford

Powder diffraction: the best is yet to come, but...

Bill David,

ISIS Facility, Rutherford Appleton Laboratory, UK & Inorganic Chemistry Laboratory, University of Oxford, UK

IS

REPORT for Decade ending April 2013 Powder diffraction Name: Age: 97 General observations Excellent progress. Technical subjects Impressive new instruments with particular excellence in detectors and electromics. Has taken full advantage of Moore's Law. Computer studies Existing programs continue to perform well. Some extremely impressive new programs. Dallling with new concepts. Creative studies Comes up with significant new creative ideas. Attitude Has matured and now has broadened interests. Social skills Very popular but can attract some unlikely characters with limited crystallographic skills. Future prospects Great potential - use to go far.

Sich

3.

APD IV, 22-25 April 2013, NIST

20

PI Exam

Accuracy in Powder Diffraction

Real Crystallography of Real Materials under Real Conditions

ball milling – a black art!

Li battery cathode

pharmaceuticals

turbine blade

superconducting cable

pencil "lead"

Richard P. Feynman (Dec 1959)

There's Plenty of Room at the Bottom An invitation to explore 21st century science and technology.

Real Crystallography of Real Materials under Real Conditions

Parametric proteins (Margiolaki & Wright)

IS

Diamond-hard graphite

Pol, Wen, Lau, Callear, Bowron, Lin, Deshmukh, Sankaranarayanan, Curtiss, David, Miller & Thackeray, Carbon (submitted)

Real Crystallography of Real Materials under Real Conditions

Structure & microstructure (Leoni)

Diamond-hard graphite

Pol, Wen, Lau, Callear, Bowron, Lin, Deshmukh, Sankaranarayanan, Curtiss, David, Miller & Thackeray, Carbon (submitted)

Instrumentation

X-ray diffractometer

CMS @ CERN

CMS @ CERN (II)

Instrumentation

X-ray diffractometer

Diamond and ISIS

ISIS TS2

Data collection

Exploring the limits

How complicated a structure can I obtain from a powder diffraction pattern? Is there a limit?

How many peaks are there in a powder diffraction pattern? Jon Wright

Limits

ISIS

Limits

ISIS

$$N_{peaks} \approx \int_{0}^{d_{max}^{*}} \Delta N(d^{*}) \exp(-\Delta N(d^{*})/p) dd^{*}$$

$$p(\delta d^*) = \exp\left(-\Delta N \,\delta d^*\right) \qquad \Delta N = 2\pi V_a d^{*2} \Delta d^*$$

Limits

Achieving precision and accuracy

The structural (and microstructural) model

IS

Fig. X.Z.6.3. Frequency distributions for torsion angles 1, 3 and 4 in famotidine as illustrated in Figs. X.Z.4.2 and X.Z.6.1. The values for form A and form B famotidine are indicated by red and blue vertical lines respectively.

Maximum likelihood techniques

Fig. X.Z.6.7. (a) The correct crystal structure of remacemide nitrate. (b) The best structure determination using a least-squares analysis to compare observed and calculated diffraction data with only the remacemide ion used in the structural model. Note that, although the structural arrangement is completely incorrect, it is clear that the solution has resulted in an optimal correlation of observed and calculated electron density. Note, in particular, that the phenyl group maps closely on to the scattering density associated with the nitrate ion. (c) The best structure determination using a maximum likelihood analysis to compare observed and calculated diffraction data with only the remacemide ion used in the structural model. The structure illustrated in (c) is enantioimetrically related to correct solution shown in (a). The agreement between the remacemide molecular position, orientation and conformation in (a) and (c) is as close as obtained in a standard least squares analysis with the nitrate ion included.

Markvardsen, A.J., W.I.F. David, and K. Shankland, *A maximum likelihood method for global optimization based structure solution from powder diffraction data.* Acta Cryst. A, 2002. **58**: p. 316-326

Maximum entropy (likelihood) techniques

- Rietveld method assumes the observed and calculated phases of the reflections are the same
- In some cases, this can lead to a biased model.
- > Combined Fourier difference map and maximum entropy approach:

Does not assume phases of the reflections

> Minimises χ^2 with the minimum number of features that are consistent with the data.

W.I.F. David and D.S. Sivia, *Extracting intensities from powder diffraction patterns* in *Structure Determination from Powder Data*, OUP, 2002.

Maximum entropy (likelihood) techniques

IS

Achieving precision and accuracy

The heroes (cont.)

Be **rigorous – do it properly** Excellent instrumentation Fundamental parameters Fundamental statistics

Ted Prince

What if the fit is not as good as it could be

- Is it wise to have 150,000 counts in the biggest peak and 5000 counts in a very highly structured background?
 - No! Redo the experiment!
- Collect all Bragg peaks with similar fractional accuracy
 - variable counting time to give E/σ (E) constant
 - If accuracy and precision are required be prepared to
 - comprehensively model structure and microstructure
 - perform fundamental line-shape analysis
 - undertake detailed "fundamental" background analysis
- If all else fails use statistics / plausible reasoning!

APD IV, 22-25 April 2013, NIST

ISIS

What's gone wrong?

- We've performed a least-squares analysis and implicitly assumed that all errors follow a Gaussian PDF
- We've been <u>certain</u> about our <u>uncertainties</u>!

UNIVERSITY OF

APD IV, 22-25 April 2013, NIST

ISIS

Urea (BM16 ESRF)

IS

	SXXD	Least Squares	LS-SXXD	Robust	R-SXXD
C1 z	0.3328(3)	0.3236(9)	-0.0092(10)	0.3319(13)	-0.0009(14)
01 z	0.5976(4)	0.6013(5)	0.0037(6)	0.5984(7)	0.0008(8)
N1 x	0.1418(2)	0.1405(3)	-0.0013(4)	0.1423(7)	0.0005(7)
Z	0.1830(2)	0.1807(5)	-0.0023(6)	0.1813(7)	-0.0017(7)
C1 U11	0.0353(6)	0.0348(20)	-0.0005(20)	0.0329(40)	0.0024(40)
U33	0.0155(5)	0.0396(30)	0.0241(30)	0.0413(40)	0.0258(40)
U12	0.0006(9)	0.0205(30)	0.0199(30)	0.0128(40)	0.0122(40)
O1 U11	0.0506(9)	0.0749(16)	0.0243(18)	0.0617(30)	0.0111(30)
U33	0.0160(6)	0.0080(14)	-0.0080(15)	0.0090(20)	-0.0070(20)
U12	0.0038(18)	0.0052(20)	0.0014(30)	-0.0011(35)	-0.0049(35)
N1 U11	0.0692(6)	0.0627(15)	-0.0065(18)	0.0697(25)	0.0005(25)
U33	0.0251(4)	0.0460(22)	0.0211(22)	0.0365(30)	0.0114(30)
U12	-0.0353(7)	-0.0252(18)	0.0101(20)	-0.0361(30)	-0.0008(30)
U13	-0.0003(3)	-0.0015(11)	-0.0012(12)	-0.0029(15)	-0.0026(15)

= diff > 4 σ

 $1/14 > 4\sigma$

David, W.I.F., J. Res. Natl. Inst. Stand. Technol. 109 (2004) 107-123

Achieving precision and accuracy

Inaccuracy and invalidation:

Inaccuracy and invalidation

Energy materials research ...

From one dimension to four ...

LiBH₄ : superionic conductor

LiBH₄ : DFT-MD PRL 108 095901 (2012)

⁷Li¹¹BD₄ : GEM (ISIS)

Hydrogen MODF in BH₄ (DFT MD)

Hydrogen MODF in BH₄ (neutron powder diffraction)($\ell = 5$ spherical harmonic fit)

APD IV, 22-25 April 2013, NIST

0.06

B

0.08

IS

REPORT for Decade ending April 2013 Powder diffraction Name: Age: 97 General observations Excellent progress. Technical subjects Impressive new instruments with particular excellence in detectors and electronics. Has taken full advantage of Moore's Law. Computer studies Existing programs continue to perform well. Some extremely impressive new programs. Dallling with new concepts. Creative studies Comes up with significant new creative ideas. Attitude Has matured and now has broadened interests. Social skills Very popular but can attract some unlikely characters with limited crystallographic skills. Future prospects Great potential - use to go far.

The best is yet to come ...

CO2 sequestration

pharmaceuticals

pencil "lead"

hydrogen stores

turbine blade

lithium batteries

gas storage

fuel cells

superhard graphite

C₆₀

structure determination

nanomaterials

paracetamol

proteins

