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Agenda

~ Face recognition market;

o Ouralgorithm;

< MegaFace challenge;

o~ FindFace — large scale search engine;
o Accuracy and timing at scale;

o~ Real-life applications.
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The global facial
recognition market

FACIAL RECOGNITION MARKET FORECAST

.J Annual growth, %

13,3

7]

2,8

23

2015 2019 2025

The market embraces software, hardware
and relevant services (consulting, cloud
computing, etc.)




222 N-TECH.
- LAB

Applications of face recognition

MAJOR

APPLICATIONS SN

y Face recognition in | |dentification of blacklisted people in airports and other public places

< a crowd

z

; FOBK Subaty Detection of traffic violations (e.g. bikers not wearing helmets, etc.)

[+4

2 -

o ls%%r;t(l;non of Identification/Identity verification of suspects in police stations
Night clubs Identification of blacklisted people
o agi oS ' Recognition of visitors’ mood, average age and gender ratio to be displayed to prospective visitors
Shopping Advising products/services (food, clothing, etc.) based on specific characteristics

_s . . Advising relevant services (banking)

3 Financial sector® Customer identity verification

& Payer identity verification and assessment of specific customer parameters

=

5

© Dating services Searching for matches with pre-specified parameters/looking like someone else; photo-based profile search
Businesses Identification of employees and time tracking software
Other Driver drowsiness detection systems, automatic face sorting in Disneyland photos, etc.
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The advantages of the algorithm

o Bestresultin the Megaface contest — better than Google's FaceNet;
o Proven efficiency on very large databases;

73 % rank-1 on 1M dataset;

70+% rank-10 accuracy on 300M+ photos from the vk.com social network;

SN N

Extremely low computational requirements (person’s features vector takes
less than 1 KbJ;

N

Query time less than a second (based on 300M+ photos).
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Face Recognition Pipeline

Face representation:

Feature
Normalizer extractor
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magic goes here...
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Deep Learning

Image recognition
ILSVRC top-5 error on ImageNet

IMAGENE

225
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7.5
2010 2011 2012 2013 2014 Human ArXiv 2015

* Source: devblogs.nvidia.com

Image captioning

. P, =8 £ !
The girl with blue hair stands under the umbrella.
NP: & woman, an umbnla, & man, & persen, & g, urblas, hal, &
11k g, & cell phone.

vp: X & halding, holds, canyi

£ S g s o s

A woman is holding an umbrella.

A man riding skis on a snow covered ski slope. ) A man Is doing skateboard tricks on a ramp.
NP & man, s, N6 SN0w, & POSON, & woman, & $now covared shopa, NP: & shataboand, A Man, & 16k, Nis Sakboand, Ta aF, &
@ SO0, A SNoWEoRd, A shiay man. e, & RN, & SREAK DOAMT, A DEFSON, & WOMAn.
VP wairing, fidng, hobSng, standing on, sking down. ’
PP: o, in, o, wilh, domn.

A man wearing skis on the snow. A man riding & skateboard on a ramp.

Source: Rémi Lebret et. al. Phrase-based Image Captioning. ICML 2015.

Word error rate on Switchboard

Speech recognition

100%a According to Microsoft's

big - bigger
Miami - Florida
Einstein - scientist
Sarkozy - France
copper - Cu
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer
Japan - sushi

speech group:
Using DL
10%
4%
2%
1% >
1990 2000 2010

* Source: Microsoft's speech group
Text analysis

Relationship Example 1 Example 2 Example 3

France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee

small: larger cold: colder quick: quicker
Baltimore: Maryland
Messi: midfielder

Berlusconi: Italy

Dallas: Texas Kona: Hawaii

Mozart: violinist Picasso: painter

Merkel: Germany Koizumi: Japan

zinc: Zn gold: Au uranium: plutonium
Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Google: Android IBM: Linux Apple: iPhone
Google: Yahoo IBM: McNealy Apple: Jobs
Germany: bratwurst France: tapas USA: pizza

Source: T.Mikolov. Efficient Estimation of Word Representations in

Vector Space



http://publications.idiap.ch/downloads/papers/2015/Lebret_ICML_2015.pdf
https://devblogs.nvidia.com
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Deep Learning. Training.

AlexNet architecture Loss function
e Multinomial logistic
v5 fc6 fc7 .
convi conv2 comv3 convd con - Forward regression
propagation oo |20 g ol ) |
> - m}g:; s gﬁ\;sfxp'ﬁll’xu}u
e Triplet loss
< N
> [I5@) = £l = 1) = F; +a]
= m— = 284 p— B:ckwartcil ) ,
propagatio e Contrastive loss
conv conv conv conv conv full  full %Ilf.--f,-llg , Tyg=1
max max max smax (0,m = || fi = fill,)” ifyi =—1
nom norm

< 20M face photos for training;
< 3 weeks training on 3 GPUs NVidia Titan Black.
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Deep Learning. Enroliment.

AlexNet architecture

convi conv2 comnv3 convd convs fc6 fc7

Feature
extraction

S

conv conv conv conv conv full full
max max max
nom

00 -~ ~-0000~00
J40}J9A 9injeo

o Robustness to different shooting conditions (perspective,
age, emotions so on.. J;

o~ Compact face representation (up to 16 floats);

< Ability to reusing for training additional classifier (gender, race, ...).
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e |Images collected from the web;

13K photos, 5K people;

The only constraint on faces is that they were detected by the Viola-Jones detector;
A number of algorithms achieve near to perfect accuracy;

Need some bigger dataset!

Example errors:

~

False negative: False positive:
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Sponsors

Megaface challenge Google ™

< Autumn 2015
o 1M identities
. ldentification and Verification scenarios

. More than 100 teams participated
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ldentification Scenario

FaceScrub MegaFace

80x390 photos TM unlabeled photos
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ldentification Results

100

80

Identification Rate %

20

40+
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10° 10} 10° 10°

Rank

-= Google - FaceNet v8

-= NTechLAB - facenx_large
Beijing Faceall - Norm_1600

- = Beijing Faceall - 1600

- NTechLAB - facenx_small

104 10° 10°

Barebones_FR - cnn
3DiVi Company - tdvm6
Joint Bayes

LBP

Random Features

uses large training set

Algorithm

NTechLAB - facenx_large

Google - FaceNet v8

Beijing Faceall Co. - FaceAll_Norm_1600

Beijing Faceall Co. - FaceAll_1600

Barebones FR - cnn

NTechLAB - facenx small

3DiVi Company - tdvmé6

Joint Bayes

LBP

Setl

73.300%

70.496%

64.803%

63.977%

59.363%

58.218%

33.705%

3.021%

2.326%
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Neural Net vs Human

100

€]

| Comparable to human abilities

. on small datasets;

70}
Scales much better and

outperforms human in a large
scale recognition problem.

60}

50

40¢

e FaceN
le-e HUMAanNs
o LBP

10! 10? 10° 10* 10° 10°
#distractors (log scale)
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@y FindFace.ru

Search among profile photos in vk.com - largest Russian social network

250M photos in index

90M people In index
Searchtime 0.5 s

50 RPS on b AWS
machines.

NN NN



https://FindFace.ru
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@y FindFace.ru

A . -
< FindFace  search | ABOUT | FAVORITES | SEARCH HISTORY | &

DATING PLATFORM

Searches 9 .
Muxaun Jlobuy Searches left- 96 Show me on top Hide me Get a free premium account

Free account How can | get more? cithe list @ from resubts list @ for a month

?

84 people found (LD

Guy -- | from 14 ysors old 35* from ciny Relationship status: any -+

o O

 Show all users g

| SEARCH

We Found:

Cepren

Piter ’ 25 yeors old,
36 yearsold, N Hobeperowe
Pulowy " Yennu

MNowao

) 30yearsold

Cropoxomey

Llogout


https://FindFace.ru
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@y FindFace.ru

A . -
< FindFace  search | ABOUT | FAVORITES | SEARCH HISTORY SRR & 5o

DATING PLATFORM

< rehas .
Muxaoun JTiobuy Searches left: 96 Show me on top Hide me Get a free premium account

- i H logout
Free account How can | get more? of the list @ from resubts list @ tor a month

?

78 people found

| SEARCH : 55y
Girl - '8"' 14 yeors old - from city Relationship status: any

 Show all users @

We Found:



https://FindFace.ru
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Accuracy at scale

100

90+

80t

70}

60+

50+

40}

30t

20+

10}

— MegéFace

— VK

10°

10* 10° 10°
#distractors (log scale)

10’

Rank-1 accuracy

Number Accuracy
of photos

T™M 73 %
250 M 60 %
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Timings

Neural Net Training
Face Detection
Feature extraction

Search time

GPU
Nvidia GTX TITAN Black

514 hours x 3 GPUs

8.96 ms

CPU
Intel Core i7-5930K

150 ms
143 ms
130 ms



2222 N-TECH.
- LAB

FindFace in real-life

o~ Russian police use findface.ru for searching criminals.
We've got a lot of emails from them about their experience.
E.g. police from Udmurt Republic in more than 50% of cold
cases found suspect by photo in vk.com.

o Findface.ru increases the percentage of solved crimes.


https://Findface.ru
https://findface.ru
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FindFace in real-life

o In St Petersburg: two teenagers decide to fire a newly built
house

~ Their faces were filmed on the hidden camera in the
elevator

. After the video had appeared in the Internet, people quickly
found accounts of these hooligans in the largest Russian
soclal network VK.com with all additional information:
where they live, what school they're attending etc.

< All information was transferred to the police.
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Robustness to occlusions

Qccluded face;

86.25%

20 20 &0 80
Rank-1 on 10K dataset



Gender recognition

o SVM classifier above feature vectors

o 99.5% accuracy
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FindFace.pro - b2b cloud platform

Upload your dataset up to 1 billion photos;
ldentification and verification scenarios;
Gender, Age, Emotion;

Scale to any number RPS you need;

Extend to 9B people dataset.
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Interaction pattern for enterprise

(o) = =] — [

N
10%/ |

Cameras Our software Customer's Storing data
Data acquisition SDK servers in customer's

Private Cloud.
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Contacts

~ Artem Kukharenko

o~ kukharenkoldntechlab.ru

o +7(499) 110-22-54


mailto:kukharenko@ntechlab.ru?subject=
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