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Accurate Industrial Robotics for Manufacturing
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Source: https://www.electroimpact.com/Products/Composites/Overview.aspx

Source: https://www.postandcourier.com/business/new-robots-to-help-boeing-s-c-meet-

production-hike/article_b42c9b5b-3a40-5326-bcf4-ed3bacb83a06.html

• Automation of large parts 
manufacturing dominated by 
monumental gantry systems

• Serial manipulators present an 
attractive alternative:

• Cheaper

• More flexible (reconfigurable)

• More compliant

• Less accurate

• <2% of industrial robots used for 
material removal (Verl et al. 
2019)



Major structural joins for aerospace have tolerances on the 
order of <.125 mm

Current process is performed by hand which is time 
consuming, iterative, and causes inefficient production flow 
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Automate shim assembly using low-cost, accurate 
articulated arms to scan mating surfaces and 
machine joining surface to net shape

Shim-Less Aircraft Assembly
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Wing Rib Shim Machining
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Factors Contributing to Machining Accuracy

Robots have much lower kinematic accuracy than CNC 
machines

Low kinematic accuracy → Part inaccuracy

Robots are more compliant than CNC machines      

Large compliance → Part inaccuracy

Modal properties of robot arms change with 
configuration

Pose dependent FRF → Dynamic path errors

Interaction between robot and workpiece

Time-varying process forces and part compliance → Part 
inaccuracy
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Accurate Robotic Machining Research @ GT 
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MxD Proprietary: Do Not Distribute8
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MxD Proprietary: Do Not Distribute9

Sensors
• Leica AT960 laser tracker and Leica T-Mac

• Leica T-Scan

• Gladiator Technologies LandMark 60 IMU

• ATI Force Sensor

Processing Nodes
• KUKA KRC4 robot controller

• Windows workstation

Network
• EtherCAT

Plant
• KUKA KR 500-3 Robot

• KUKA smartPAD Teach Pendant
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Real-Time Feedback Control

Robot

Windows PC KRC4

EtherCAT
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Tool Tip Position Measured using Leica AT960 with T-Mac
Open Loop

Average Position Error: 0.4 ± 0.28 mm

Tool Tip Position Measured using Leica AT960 with T-Mac
KRL Guided

Average Position Error: 0.127 ± 0.07 mm

Nguyen et al., SAE Int. J. Aero., 2021



Data-driven Modeling of Robot Dynamics
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We can model 𝑓 𝑝𝑖  as a Gaussian 

Process:

Nguyen et al., J. Mfg. Sci. Eng., 2019



Application to Milling Vibration Prediction

Peak-to-Valley Vibrations (mm)

Position 1 Position 2

Y Z X Z

Measured 0.085 ± 0.004 0.064 ± 0.005 0.506 ± 0.022 0.125 ± 0.008

Predicted 0.070 ± 0.002 0.058 ± 0.001 0.473 ± 0.014 0.100 ± 0.006
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The GPR model peak-to-valley vibration predictions are correlated to the measured behavior



Pose Dependent Modal Properties
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The data shows that the modal parameters change with arm configuration, and 

therefore arm configuration must be considered in controller tuning



Active Vibration Suppression

Nguyen et al., Int. J. Mach. Tools & Manuf., 2020
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Input Shaping to Improve Dynamic Path Accuracy

• A technique that may improve dynamic path accuracy is to apply input shaping to 
the desired trajectory

• Preliminary results indicate that this approach may significantly reduce vibrations 
from self excitation of the robot structure

[1] Singhose, W. (2009). Command shaping for flexible systems: A review of the first 50 years. International Journal of Precision Engineering and Manufacturing, 10(4), 153–168. 

http://dx.doi.org/10.1007/s12541-009-0084-2.

Below: Diagram showing the 

input shaping process [1]

START

END

Time equals 

zero at 

corner

Left: Square wave trajectory in the XY plane shows the reference trajectory, 

measured response to the unshaped trajectory, and measured response to the 

shaped trajectory, at 120 ipm velocity

Below: The path following error to the reference trajectory after rounding the 

corner in the trajectory shown at left for the shaped and unshaped trajectory



Ongoing Work
• Integrating on-robot vision-based 

metrology for detection of part 
features and their location to guide 
machining trajectories (e.g., 
trimming to a molded scribe line)

• Input shaping of complex curvilinear 
trajectories to suppress structural 
vibration (e.g., cornering)

CFRP part with Scribe Line



• Standard method to characterize the accuracy of external sensor-
guided (e.g., laser tracker) robots

• Ability for users to modify robot control action at faster rates (<< 4 
ms) based on external sensor feedback

• Standard method to determine the pose-dependent modal properties 
of industrial robots over a defined working region

Needs



• Boeing Manufacturing Development Center @ Georgia Tech

• Boeing University Innovation Program

• MxD
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