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Constraints on phases and grains

Wh t i  i t f What is impact of 
interactions between 

h  d diff t phases and different 
grain orientations on 

t  / d f ti ?stress / deformation?
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Thermal anisotropyThermal anisotropy
 e.g. Zirconium-Niobium alloy; two phase HCP and BCC

10.1 x 10-6 / °C 7.4 x 10-6 / °C

5.3 x 10-6 / °C
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Diffraction measurement of elastic strain

(200)

(220) =2dsin

 d/dd/d

Diffraction peaksDiffraction peaks 
measured in specific 
direction in sampledirection in sample

(cubic example shown)
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(cubic example shown)



Relationship d-hk l and a & cRelationship d-hk.l and a & c

cubic222 lkh
adhkl  222 lkh 

hexagonalhexagonal

Will h ld f i l t l i l t l d dWill hold for single crystal, a single-crystal powder, and 
a “stress-free” polycrystal
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Deviation from ideal relation due to: 
thermal stressesthermal stresses
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Deviation from ideal relation due to: 
thermal stresses effect of texturethermal stresses – effect of texture
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How to handle in Rietveld refinement?How to handle in Rietveld refinement?
e.g. GSAS:
“RSTR” – isotropic strain parameterRSTR  isotropic strain parameter, 
“RSTA” – assumes cosine variation with angle from c-axis

1000

00.2

0

ai
n 

[1
0-6

]

10 3

00.2

st
ra 10.3

10.2

10 011 2

-1000

0 90

20.1
11.0
10.0

20.2
11.2

Queen’s University, Kingston, Canada • Department of Mechanical and Materials Engineering • Nuclear Materials Research Group

0 90 {hk.l}    Angle from c-axis



Elastic anisotropyElastic anisotropy
Elastic anisotropy; different 
stiffnesses in different 
crystallographic directions
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Plastic anisotropyPlastic anisotropy
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Elastic strain [ 10-6 ]Elastic strain [ 10-6 ]Elastic strain [ 10-6 ]



Examples of intergranular strains in Zr
Elastic strain (E-6)
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Deviation from ideal relation due to: 
plasticity induced stressesplasticity induced stresses
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Deviation from ideal relation due to: 
plasticity induced stresses –plasticity induced stresses 
response depends on texture
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Deviation from ideal relation due to: 
plasticity induced stresses –plasticity induced stresses 
response depends on texture
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3000

After 3% strain
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After 3% strain
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How to handle in a Rietveld refinement?How to handle in a Rietveld refinement?
Most extreme peaks, typically strain of  ~0.001

Response differs too far from relation to allow accurate peak 
width and/or peak intensity fit while maintaining peakwidth and/or peak intensity fit while maintaining peak 
positions 

e.g. pseudo-anisotropic broadeninge.g. pseudo anisotropic broadening

Solution 1) Allow peak positions to vary freely?
2) Incorporate models of plasticity?

Queen’s University, Kingston, Canada • Department of Mechanical and Materials Engineering • Nuclear Materials Research Group



Deformation 
modes 
observed inobserved in 
single crystal 
h Zhcp Zr

basal slip
1120)0001(

basal slip

Queen’s University, Kingston, Canada • Department of Mechanical and Materials Engineering • Nuclear Materials Research Group



Understanding strains – models of 
polycrystalline plasticitypolycrystalline plasticity

Single crystal properties
+

Crystallographic texture (ODF)y g ( )
+

Crystal interactions w’ matrixCrystal interactions w  matrix

M i &Macroscopic & 
polycrystal properties
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e.g. self-consistent elasto-plasticg p



Single crystalliteSingle crystallite
• elastic and plastic 
anisotropy

Matrix 
• homogenous average 
of all the crystallites• relate crystallite strain / 

stress state to macro 
applied strain / stress

of all the crystallites
• iterate to solution
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applied strain / stress.



Model: self-consistent elasto-plasticModel: self-consistent elasto-plastic
Keep track of each grain, its stress state 
and its plastic strainand its plastic strain.

Fixed parameters:p
• Single crystal elastic constants
• Texture (  grain population )
• Plastic slip directions / planes

Shear stress

• Plastic slip directions / planes

Fitted parameters, to get best agreement 



with experiment
• Critical resolved shear stress, 
• Hardening gradient Hardening gradient 

i.e. only 2 fitting parameters for a slip 
system

Shear strain
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(Perhaps more complex plastic law)



Use of zirconium Reactors worldwide
C– Zircaloy Fuel Cladding;

– Pressurized or 
unpressurizedu p essu ed
H2O coolant

– Temperatures range 
from ambient tofrom ambient to 
>300ºC 

– PHWR;
– Zr-2.5Nb* pressure 

tube contains coolant
Zircaloy 2 ‘calandria’– Zircaloy-2 calandria  
tube, separates hot 
pressure tube from 

d t

Metallurgy somewhat analogous to titanium

moderator
– Research reactors;

– Reflector vessel walls
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* 2 phase alloy, c.f. Ti-6Al-4V



Neutron 
Economy

Zr alloy components
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Effect of neutron irradiation
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Residual structure after decay of thermal spike y p
 Vacancy clusters
 Interstitial clusters
 Individual vacancies (freely migrating)
 Individual SIAs (freely migrating)

Subsequent Evolution
• Vacancies and interstitials migrate through the• Vacancies and interstitials migrate through the 
lattice and the microstructure evolves

• Usually a dense dislocation “loop” structure 
generated over first few dpa

Queen’s University, Kingston, Canada • Department of Mechanical and Materials Engineering • Nuclear Materials Research Group

g p



Dislocation loops
Diff i i i / i l dDifferences in migration rates / anisotropy lead to 
different densities of <a> and <c> loop dislocations

l<c> loop

l
Queen’s University, Kingston, Canada • Department of Mechanical and Materials Engineering • Nuclear Materials Research Group

<a> loop



Hardening of Steel

UE decreases with doseUE decreases with dose

YS increases with dose
Similar effect 
in zirconiumin zirconium

alloys
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2
Unirradiated Experiment, Load Parallel to Hoop

2
Unirradiated Model, Load Parallel to Hoop
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Very low hardening – plot vs macroscopic strain



2
Unirradiated Experiment, Load Parallel to Hoop

2
Irradiated Experiment, Load Parallel to Hoop
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2
Irradiated Experiment, Load Parallel to Hoop

2
Irradiated Model 1, Load Parallel to Hoop
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Impact of irradiation on model (fit) CRSSp ( )
Mode Unirradiated

[MPa]
Irradiated 

[MPa]
Increase

[MPa]

Prism <a> 160 370 210 (x2.3)

Basal <a> 170 370 200 (x2.2)

Tensile twin 450 n/a n/a

<c+a> 460 500 0 (x1.1)

Macroscopic 
(experimental 
0.2% yield)

530 / 740 820 / 950 (x1.5 / x1.3)
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Undeformed Undeformed Deformed
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Undeformed Deformed
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C l iConclusion
 Internal stresses change location of peaks enough that we te a st esses c a ge ocat o o pea s e oug t at e
must account for them in Rietveld refinement

 Can study these changes to determine crystal Can study these changes to determine crystal
 Irradiation changed response (load sharing) of differently 
(crystographically) oriented grains.

 Effect of irradiation on critical resolved shear stress in extruded 
Zr2.5Nb was determined

 Can be correlated with dislocation populations measured by 
peak width analysis (typically ex situ)
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