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Outline

» Interphase and intergranular stresses
» Effect on Rietveld refinement

» Opportunities to determine crystal properties
Impact of high energy neutrons on structure

Use of internal stresses to determine operating
deformation modes

» Conclusions
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Queen’s

Constraints on phases and grains

What is impact of

Interactions between
phases and different
grain orientations on
stress / deformation?
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Thermal anisotropy

» e.g. Zirconium-Niobium alloy; two phase HCP and BCC

= 10.1x10°/°C 7.4 x10%/°C

53x10°/°C
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Diffraction measurement of elastic strain

Bank no. = 2 Two—theta = —90.00 Observed Profile
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Diffraction peaks
measured In specific
direction in sample

(cubic example shown)
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Relationship d-hk.land a & c

4 - d
hkl — \/hz K| cubic
I 4 [ hP+hk+k*\ 17
di; 3 a’ 2 hexagonal

Will hold for single crystal, a single-crystal powder, and
a “stress-free” polycrystal
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Deviation from ideal relation due to:
thermal stresses

1000 |

. 00.2

strain [10'6]
o

-1000

{hk.l} Angle from c-axis

Queen’s University, Kingston, Canada « Department of Mechanical and Materials Engineering ¢ Nuclear Materials Research Group @

Qugens



Deviation from ideal relation due to:
thermal stresses — effect of texture

’ |

LOOQ -+ I
- 00.2 .
S s i
o | 1
ul s i
= 0 |
g :
5 s
-1000
| |

{hk.l}  Angle from c-axis

Queen’s University, Kingston, Canada « Department of Mechanical and Materials Engineering ¢ Nuclear Materials Research Group @

Qugens




How to handle in Rietveld refinement?
e.g. GSAS:

*“RSTR” — Isotropic strain parameter,
*RSTA” — assumes cosine variation with angle from c-axis
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Elastic anisotropy

Elastic anisotropy; different
stiffnesses in different
crystallographic directions

[GPa]
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Plastic anisotropy

T macro stress-strain
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Examples of intergranular strains in Zr
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Deviation from ideal relation due to:
plasticity induced stresses
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Deviation from ideal relation due to:
plasticity induced stresses —

response depends on texture
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Deviation from ideal relation due to:
plasticity induced stresses —
response depends on texture
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After 3% strain
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After 3% strain
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How to handle in a Rietveld refinement?

Most extreme peaks, typically strain of ~0.001

Response differs too far from relation to allow accurate peak
width and/or peak intensity fit while maintaining peak
positions

e.g. pseudo-anisotropic broadening

Solution 1) Allow peak positions to vary freely?
2) Incorporate models of plasticity?
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Deformation

observed In
single crystal
hcp Zr

\

(1010) <1120> (0001) <1120 >
prismatic slip basal slip
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(1011) =1123= (1012) <1011=
pyramidal slip tensile twin
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Understanding strains — models of
polycrystalline plasticity

Single crystal properties m

+

Crystallographic texture (ODF)

+ L
Crystal interactions w’ matrix

\

Macroscopic & A
polycrystal properties
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e.g. self-consistent elasto-plastic

}:0

Single crystallite

e elastic and plastic
anisotropy

* relate crystallite strain /
stress state to macro
applied strain / stress.

Maltrix

 homogenous average
of all the crystallites

e iterate to solution

Queen’s University, Kingston, Canada « Department of Mechanical and Materials Engineering ¢ Nuclear Materials Research Group 0 @



Model: self-consistent elasto-plastic

Keep track of each grain, its stress state
and its plastic strain.

Fixed parameters:
e Single crystal elastic constants

: . Shear stress
» Texture ( = grain population ) A

e Plastic slip directions / planes %
7L

Fitted parameters, to get best agreement
with experiment
e Critical resolved shear stress, t©
« Hardening gradient ¢
.e. only 2 fitting parameters for a slip Shear strain
system
(Perhaps more complex plastic law)

>
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Use of zirconium

Reactors worldwide
— Zircaloy Fuel CladdinQ;:

— Pressurized or
unpressurized

H,O coolant
////—\—____E——h-—_h

FEACTOR HEAT EXCHANGER — Temperatures range
from ambient to
>300°C

PHWR;

— Zr-2.5Nb* pressure
tube contains coolant

— Zircaloy-2 ‘calandria’
tube, separates hot
pressure tube from
moderator

— Research reactors:
— Reflector vessel walls

Hot coolant

~ ' \ Cool coolant

r
Pressure vessel

Metallurgy somewhat analogous to titanium
* 2 phase alloy, c.f. Ti-6Al-4V
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Neutron
Economy
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Zr alloy components ®
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Effect of neutron irradiation
@)

Fast Neutron

Fast Neutron

O
O
pathof @ O
O
-

Vacant Displaced Atom Subsequently
Position Displaces many others

ge, each atom is displaced from its position about once a year.
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Residual structure after decay of thermal spike

» Vacancy clusters
» Interstitial clusters
» Individual vacancies (freely migrating)

» Individual SIAs (freely migrating)

Subsequent Evolution

Aﬂﬁlﬁﬂlﬂﬂ -~ [ Va §

e Vacancies and interstitials migrate through the
attice and the microstructure evolves

e Usually a dense dislocation “loop” structure
generated over first few dpa
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Dislocation loops
Differences in migration rates / anisotropy lead to
different densities of <a> and <c> loop dislocations

<c> loop
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Unirradiated Experiment, Load Parallel to Hoop Unirradiated Model, Load Parallel to Hoop
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Unirradiated Experiment, Load Parallel to Hoop Irradiated Experiment, Load Parallel to Hoop
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Irradiated Model 1, Load Parallel to Hoop
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Impact of irradiation on model (fit) CRSS

Mode Unirradiated Irradiated Increase
[MPa] [MPal] [MPa]

Prism <a> 210 (x2.3)
Basal <a> 170 370 200 (x2.2)
Tensile twin 450 n/a n/a
<ct+a> 460 500 0 (x1.1)
Macroscopic
(experimental 530/ 740 820 /950 (x1.5/x1.3)
0.2% vyield)
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Conclusion

» Internal stresses change location of peaks enough that we
must account for them in Rietveld refinement

» Can study these changes to determine crystal

Irradiation changed response (load sharing) of differently
(crystographically) oriented grains.

Effect of irradiation on critical resolved shear stress in extruded
Zr2.5Nb was determined
» Can be correlated with dislocation populations measured by
peak width analysis (typically ex situ)
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