

Queen's University, Kingston, Ontario, Canada Department of Mechanical and Materials Engineering Nuclear Materials Research Group

Effect of internal stress on peak position: problems and opportunities

HCP materials

Mark Daymond APD IV

Queen's University, Kingston, Canada • Department of Mechanical and Materials Engineering • Nuclear Materials Research Group

Outline

- Interphase and intergranular stresses
- Effect on Rietveld refinement
- Opportunities to determine crystal properties
 - Impact of high energy neutrons on structure
 - Use of internal stresses to determine operating deformation modes
- Conclusions

Constraints on phases and grains

What is impact of interactions between phases and different grain orientations on stress / deformation?

Thermal anisotropy

e.g. Zirconium-Niobium alloy; two phase HCP and BCC

Diffraction measurement of elastic strain

 $\lambda = 2dsin\theta$

$$\varepsilon = \Delta d/d$$

Diffraction peaks measured *in specific direction in sample*

(cubic example shown)

Relationship d-hk.l and a & c

$$d_{hkl} = \frac{a}{\sqrt{h^{2} + k^{2} + l^{2}}} \quad \text{cubic}$$

$$\frac{1}{d_{hkl}^{2}} = \frac{4}{3} \left(\frac{h^{2} + hk + k^{2}}{a^{2}} \right) + \frac{l^{2}}{c^{2}} \quad \text{hexagona}$$

Will hold for single crystal, a single-crystal powder, and a "stress-free" polycrystal

Deviation from ideal relation due to: thermal stresses

Deviation from ideal relation due to: thermal stresses – effect of texture

How to handle in Rietveld refinement?

e.g. GSAS:

"RSTR" – isotropic strain parameter,

"RSTA" – assumes cosine variation with angle from c-axis

Elastic anisotropy

Plastic anisotropy

Examples of intergranular strains in Zr

Deviation from ideal relation due to: plasticity induced stresses

Deviation from ideal relation due to: plasticity induced stresses – response depends on texture

After 3% strain

After 3% strain

How to handle in a Rietveld refinement?

Most extreme peaks, typically strain of ~0.001

Response differs too far from relation to allow accurate peak width and/or peak intensity fit while maintaining peak positions

e.g. pseudo-anisotropic broadening

Solution 1) Allow peak positions to vary freely?2) Incorporate models of plasticity?

(1011) <1123> pyramidal slip

(1012) <1011> tensile twin

Queen's University, Kingston, Canada • Department of Mechanical and Materials Engineering • Nuclear Materials Research Group

Understanding strains – models of polycrystalline plasticity

Single crystal properties Crystallographic texture (ODF) Crystal interactions w' matrix Macroscopic & polycrystal properties

e.g. self-consistent elasto-plastic

Model: self-consistent elasto-plastic

Keep track of each grain, its stress state and its plastic strain.

Fixed parameters:

- Single crystal elastic constants
- Texture (\Rightarrow grain population)
- Plastic slip directions / planes

Fitted parameters, to get best agreement with experiment

- Critical resolved shear stress, $\boldsymbol{\tau}$
- Hardening gradient $\boldsymbol{\phi}$
 - i.e. only 2 fitting parameters for a slip system

(Perhaps more complex plastic law)

Use of zirconium

Reactors worldwide

- Zircaloy Fuel Cladding;
 - Pressurized or unpressurized H₂O coolant
 - Temperatures range from ambient to >300°C

<u>PHWR;</u>

- Zr-2.5Nb* pressure tube contains coolant
- Zircaloy-2 'calandria' tube, separates hot pressure tube from moderator
- Research reactors;
 - Reflector vessel walls

Metallurgy somewhat analogous to titanium * 2 phase alloy, c.f. Ti-6AI-4V

Queen's University, Kingston, Canada • Department of Mechanical and Materials Engineering • Nuclear Materials Research Group

Effect of neutron irradiation

Residual structure after decay of thermal spike

- Vacancy clusters
- Interstitial clusters
- Individual vacancies (freely migrating)
- Individual SIAs (freely migrating)

Subsequent Evolution

- Vacancies and interstitials migrate through the lattice and the microstructure evolves
- Usually a dense dislocation "loop" structure generated over first few dpa

Dislocation loops

Differences in migration rates / anisotropy lead to different densities of <a> and <c> loop dislocations

Queen's University, Kingston, Ca

Experiment Model Very low hardening – plot vs macroscopic strain

Unirrad Experiment

Irrad experiment

Impact of irradiation on model (fit) CRSS

Mode	Unirradiated [MPa]	Irradiated [MPa]	Increase [MPa]
Prism <a>	160	370	210 (x2.3)
Basal <a>	170	370	200 (x2.2)
Tensile twin	450	n/a	n/a
<c+a></c+a>	460	500	0 (x1.1)
Macroscopic (experimental 0.2% yield)	530 / 740	820 / 950	(x1.5 / x1.3)

Conclusion

- Internal stresses change location of peaks enough that we must account for them in Rietveld refinement
- Can study these changes to determine crystal
 - Irradiation changed response (load sharing) of differently (crystographically) oriented grains.
 - Effect of irradiation on critical resolved shear stress in extruded Zr2.5Nb was determined
- Can be correlated with dislocation populations measured by peak width analysis (typically ex situ)

Acknowledgements

- Data collected at
 - ISIS (Ed Oliver)
 - LANSCE (Bjorn Clausen)
- Fei Long, Feng Xu Queen's
- Levente Balogh LANSCE

Work funded by UNENE / NSERC Industrial Research Chair in Nuclear Materials

