Multicrystal diffraction

DTU, Denmark: C. Gundlach, P.C. Hansen, D. Juul Jensen, E.M. Lauridsen, L. Margulies, J. Oddershede, U.L. Olsen, W. Pantleon, H.F. Poulsen, S. Schmidt, H. Simons Uni Copenhagen: H.O. Sørensen

ID11, ESRF, France: A. Götz, A. King, W. Ludwig G.B.M. Vaughan, J. Wright MPIbpc, Göttingen: J. Davaasambuu, S. Techert Uni Oxford: K. Paintankar, E.F. Garman

Sector 1, APS, Chicago: J. Almer, U. Lienert

Carnegie-Mellon: C. Hefferan, S.F. Li, A. Rollett, R.M. Suter.

Lawrence Livermore: J. Bernier

Cornell: M. Miller

.....

Diffraction

Single Crystal

Multicrystal

Powder

Case for multicrystal diffraction

Microstructure

- Grain statistics and maps: phase, orientation, stress, 3D shape
- Grain dynamics and grain interactions

Samples

- Does not comply with powder diffraction
- Minority phases (10⁻⁹ volume fraction)
- Screening of samples

Accuracy

- Crystallography: more redundancy than single crystal work
- Strain: measure not only radial strain

1. Grain identification:

- Calibrate instrument
- Find space group
- 3D peak search
- Indexing
- Filtering & fitting
- Crystallography
- Validation

- Use NIST powder diffr. standards

- Calibrate instrument
- Find space group
- 3D peak search
- Indexing
- Filtering & fitting
- Crystallography
- Validation

-Use powder diffraction methods

ImageD11 program by J. Wright*

*sourceforge.net/apps/trac/fable/wiki/imaged11

- Calibrate instrument
- Find space group
- 3D peak search
- Indexing
- Filtering & fitting
- Crystallography
- Validation

Peak profiles

Typical: CMS within 10% of pixelsize

Limitations:

Peak Overlap

Plastic deformation

- Calibrate instrument
- Find space group
- 3D peak search
- Indexing
- Filtering & fitting
- Crystallography
- Validation

Orientation space:

- Calibrate instrument
- Find space group
- 3D peak search
- Indexing
- Filtering & fitting
- Crystallography
- Validation

Simulation of monodisperse Al with conservative errors: ($\sigma_{2\theta} = 0.025^{\circ}, \sigma_{\omega} = 0.125^{\circ}, \sigma_{\eta} = 0.05^{\circ}$)

Nr grains	Grains correct	Reflections correct	Analysis time
1000	1000	99.2%	3 min
3000	3000	97.4%	50 min

*S. Schmidt. Grainspotter. J. Appl. Cryst., in review

Other Indexing programs:

E.M. Lauridsen *et al. J. Appl. Cryst.*, **34**, 744 (2001)

- W. Ludwig et al. Rev, Sci. Instrum. 80, 33905 (2009)
- J. Wright. ImageD11 software (2009)
- J. Bernier et al. J. Strain Analysis Eng. Design. 46, 527-547 (2011)
- H. Sharma et al. J. Appl. Cryst. 45, 705-718 (2012)

Filter outlayers in reflections (and grains) - Calibrate instrument - Find space group Delete or change assignment - 3D peak search For each grain fit - Indexing 3D position, orientation, strain tensor - Filtering & fitting - Crystallography - Validation Oddershede et al. J. Appl. Cryst. 43, 539 (2010) J.V. Bernier et al. J. Strain Analysis 46, 527 (2011)

H. Sharma et al. J. Appl. Cryst. 45, 705-718 (2012)

- Calibrate instrument
- Find space group
- 3D peak search
- Indexing
- Filtering & fitting
- Crystallography
- Validation

Simulation of 819 grains of Ti-7%Al (P6/mmc), 80 reflections per grain. Experimentally determined errors: $(\sigma_{2\theta} = 0.002^{\circ}, \sigma_{\omega} = 0.02^{\circ}, \sigma_{\eta} = 0.01^{\circ})$

Orientation

Strain components

^{6 • 10&}lt;sup>-5</sup> in strain

J.V. Bernier et al. J. Strain Analysis 46, 527 (2011)

Oddershede *et al. J. Appl. Cryst.* **43**, 539 (2010) H. Sharma *et al. J. Appl. Cryst.* **45**, 705-718 (2012)

- Calibrate instrument
- Find space group
- 3D peak search
- Indexing
- Filtering & fitting
- Crystallography
- Validation

Interface to SHELX, JANA2000, MOSFLM:

Refine grains independently

or

Merge and global refinement

Grain growth

E.M. Lauridsen, H.F. Poulsen, S.F. Nielsen, D. Juul Jensen. Acta Mat. 51, 4423 (2003).

Grain properties mapping

CMS position of 2842 grains in an IF steel sample:

J. Oddershede, G. Winther, H.F. Poulsen, L. Margulies, M. Kobyashi,, S. Schmidt, J. Wright, W. Reimers.

Stress mapping around a crack in Mg

J. Oddershede, B. Camin, S. Schmidt, L.P. Mikkelsen, H.O. Sørensen, U. Lienert, H.F. Poulsen, W. Reimers. *Acta Mater.* **60**, 3570-3580 (2012).

Peak broadening: resolving sub-grains

B. Jakobsen, H.F. Poulsen, U. Lienert, J. Almer, S.D. Shastri, H.O. Sørensen, C. Gundlach, W. Pantleon Science **312** (2006) 889-892

Crystallography on small molecule

Validation: $Cu(C_2O_2H_3)_2H_2O.$ 70 grains of size < 1 micron Cell ~1400 Å³ (C2/c) R₁ = 5.7

Compare to Powder diffraction Single crystal diffraction

Comparison of Bond lengths

Bond	Single Crystal	Multicrystal	Powder	$ d_{mc} - d_{sc} \times 10^{3}$	$ \mathbf{d}_{pow} - \mathbf{d}_{sc} \times 10^3$
Cu-O1	1.9880(8)	1.985(5)	1.981(4)	3	7
Cu-O2	1.9962(8)	1.991(7)	1.985(4)	5	11
Cu-O3	1.9431(9)	1.945(7)	1.924(4)	2	18
Cu-O4	1.9575(9)	1.963(7)	1.949(4)	6	8
Cu-O5	2.1588(14)	2.149(8)	2.149(9)	11	11
$<\Delta (Cu - O) >$				5.4 (31)	11.0 (24)
O1-C1	1.2601(12)	1.259(11)	1.246(7)	1	14
O2-C1	1.2613(14)	1.257(11)	1.296(8)	4	35
O3-C3	1.2612(15)	1.273(11)	1.309(8)	12	48
O4-C3	1.2588(14)	1.242(10)	1.271(8)	16	12
$<\Delta(O-C)>$				8.2 (92)	27.3 (39)
C1-C2	1.5022(15)	1.497(13)	1.563(8)	5	61
C3-C4	1.5055(18)	1.519(13)	1.496(9)	14	9
$<\Delta (C - C) >$				9.5 (92)	35 (6)
O5-H7	0.829(19)	0.85(13)		20	
O5-H8	0.73(2)	0.99(13)		260	
H7-O5-H8	117.3(13)	101(11)			
$<\Delta (C - H) >$				140 (180)	

Comparison of Thermal Factors

	Δ U $_{ m eq}$ in %		Δ (u ₃ /u ₁) in %	
	Multicrystal	Powder	Multicrystal	Powder
Cu1	4	-29	9	178
01	-1	27	0	191
02	2	32	5	163
03	-7	21	-22	104
04	2	13	-6	-3
05	6	30	10	5
C1	1	76	22	
C2	2	27	-4	
C3	6	37	33	
C4	2	49	9	
H7				
H8				
Absolute deviation	3.3	34.1	12.0	107.3
Mean deviation	1.7	28.3	5.6	106.3

Proteins

Spot overlap:

5 cubic insuline crystals:

Crystal identifier	14-0	14-2	14-5
Resolution range (Å)	55.1-1.9 (2-1.9)	31.9-1.9 (2-1.9)	26.6-1.9 (2.0-1.9)
Number of refl Total Unique	67286 6391	67962 6395	67089 6341
Completn	100(100)	100(100)	99.9(100)
Multiplicity	10.5(10.9)	10.6(10.9)	10.6(10.9)
R _{meas}	0.12(0.3)	0.08(0.3)	0.07(0.2)
l/s(l)	21.5(7.4)	24.9(9.6)	28.6(12.2)
Wilson B (Å ²)	16.6	18.4	17.7

Merged: $R_{p.i.m} = 0.015$

Paithankar, KS , Sørensen, HO , Wright, JP, Schmidt, S, Poulsen, HF & Garman, EF, Acta Cryst D 67, 608-618 (2011). Overview: H.O. Sørensen et al. Z. Kristallogr. 227 63-78 (2012)

3D grain mapping

DCT:

Mapping β -Ti at ID19, ESRF:

Layer-by-layer:

Mapping pure Ni at sector-1 at APS:

G. Johnson, A. King, M. G. Honnicke, J. Marrow and W. Ludwig. *J. Appl. Cryst.* (2008) **41**, 310-318, C. M. Hefferan, S. F. Li, J. Lind, U. Lienert, A. D. Rollett, P. Wynblatt, R. M. Suter, *Computers, Materials and Continua* (2009) **14**, 209-219

Grain Growth in Titanium

Experimental results

Phase field simulations

Risø: E.M. Lauridsen, S. Poulsen, A. Lyckegaard. Northwestern: P. Voorhees, I. McKenna Navy Resarch Lab: R. Fonda ESRF: W. Ludwig, A. King, S. Rolland

Instruments

Beamlines

ID11 @ ESRF 1-ID @APS HEMS @ PETRA-III (CHESS, Spring-8, ...)

Neutrons:

ESS-DTU collaboration

Electrons*:

1 nm

Software

FABLE:

Available on Sourceforge

*H.H. Liu et al., Science 332, 833 (2011)

Perspective 1:

More complex samples

Limitation:

Size distribution Bad grains

Solution 1: Model as

N multigrains

+ very strongly textured powder pattern*

Solution 2:

Avoid segmentation

Full forward modeling

*I. G. Kazantsev et al. Inverse Problems 25, 105009 (2009)

Perspective 2:

Alternative: diffraction tomography and PDF tomography

Demonstration: subgrains in Al

Grain mapping

X-ray microscopy

Resolution 200 nm

Accuracy in multigrain crystallography

H.O. Sørensen et al. Multigrain crystallography. Z. Kristallogr. 227 (2012) 63-78