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The Big Picture

● X-ray Microanalysis
– Electron Probe Microanalysis (EPMA)

– Energy Dispersive X-ray Microanalysis (XEDS)

– Microanalysis of challenging samples
● Particles, fbers, flms, inclusions, ...

– Microanalysis of particle data sets

● Customers
– Material science, forensics, manufacturing, 



  

Our Tools

● Instruments
– 2 electron microprobes, 2 FIBS, 2 FEG SEM, 

1 W-flament SEM

● Software
– NIST DTSA-II – Simulation & quantifcation

– NIST Graf – Qantifcation, revietw & data mining 
of particle data sets

● Other techniques
– STEM, XRF, EBSD, Atom Probe, Confocal, XRD, 

Auger



  

High Speed Automated AnalysisHigh Speed Automated Analysis
of Particles using SEM/EDSof Particles using SEM/EDS

● High Speed – 10,000+ particle data sets
– Moderate quality analyses of many particles

– Search for a needle-in-a-haystack

● Automated – Configure, start then no operator 
intervention

– Minimize operator bias

– Reduce tedium

● Analysis - 
– Images and quantitative elemental analysis



16.0 seconds4.0 seconds
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8.0 seconds

Conventional Si(Li) Detector – 6.4 µs process time



  

Major Time Sinks

● Stage motion – Tiling, stage speed
● Searching – Search pixel size, pixel dtwell
● Measuring – Accuracy & pixel dtwell
● Compositional Analysis – Limits-of-detection
● Mapping – Pixel dtwell, area
● Overhead

– QC



  

Strategies for Optimizing 
Stage Movement

● Speed up the stage
– Particularly backlash removal jogs, post-move 

vibration

● Minimize stage movement
– Move in serpentine

– Subsets
● Fixed size - Order frames to produce shortest path
● Unknotwn size – Can’t optimize path

– Electronic felds – Move beam not stage



  

Optimizing the 
Backscatter Detector

● Consider a probe current of 1 nA and a dtwell of 1 µs

– (1 nA)(1 µs) = (6.241 × 1018 e-/s)(10-9)(10-6 s) = 6,200 e-

● Typical backscater coefcients range from 5% to 
50%

● If twe could collect every electron from
– ΔI/I = (3,100)1/2/(3,100) = 1.8%

● We actually collect about 14%
– ΔI/I = (430)1/2/(430) = 4.8%

– ΔI/I = (43)1/2/(43) = 15%



  

15 mm
12.4 mm

Sample

22 mm
5.9 mm

Area of a spherical cap

A=2πRh

Ω=
2π Rh

R2

ΩBSED=1.46 sr

WD = 17 mm



  



  

Optimizing EDS

● Maximize solid angle
– Large area

– In close

● Many angles beter than one
– Multiple detectors

● Many pulse processors beter than one
– Multiple pulse processors



  

Secondary
detector

X-ray Detectors

Backscater
detector



  
TESCAN MIRA3 twith 4 PulseTor 30 mm2 SDD

Take-of angle: 35°
Sample-to-detector: 34 mm
Optimal WD: 17 mm
Detector area: 4 × 30 mm2

Collection efciency: 0.66% 
OCR: 200 cps per nA on Cu



  

Oxygen in Iron Oxide Particles

Sample: Ratw iron oxide particles from Calvert Clifs, MD

Sum

Detector 1

Detector 2 Detector 3

Detector 4



  

An SEM is not a Camera – Part 1

An SEM:
● Collects images pixel-by-pixel, rotw-by-rotw
● Can stop the raster anytwhere
● Can change directions

● We can size a particle quickly regardless of twhether it is large or small.
● Te “coord-raster” can be used to keep the beam on the particle twhile collecting EDS.
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An SEM is not a Camera – Part 2

An SEM can:
● Dynamically change
  pixel spacing

● Search on a large pixel
 spacing
● Measure on a fne pixel
 spacing

Search
Measure
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An SEM is not a Camera – Part 3

An SEM can:
● Raster the beam outside
 the nominal feld-of-vietw
● Naturally handle particles
 that fall on a feld edge.

Search
Measure



  

A:
1

2

3

Center

B:

C:D:

Search

Center

SizeAnalyze



  

Does it matter?

Dimensions Timing Precision

Search Measure Search
Pixels Pixels (seconds) (seconds) (seconds)

Naive 2048 2048 4.1941 part in 2048 0 4.19
Optimized 256 2048 0.0661 part in 2048 ~0.025 2.57

Overhead
per particle

Time for
100 particle

field

Optimized Particles are sized and a spectrum collected as soon as discovered
Naive Particles are sized and spectrum collected at the end-of-frame

Fetwer small particles are lost during analysis using the optimized algorithm.



  

Does it work?

● 1,000 particle / hour

● Search: 99.4 mm2 in 42 
minutes at 1 µm pixel 
spacing

● Size: 10 particles / s

● Qantify: 0.3 particles / s

● 7,500 particles / hour

● Search: 100 mm2 in 13 
minutes at 1 µm pixel 
spacing

● Size: 18 particles / s

● Qantify: 2.5 particles / s

OLD NEW



  

NIST's contribution

Tying it all together

DTSA-IIDTSA-II

SharkSEM API
SEM / EDX

EM Automation 
Library in Java

+ +



  

A Final Word on QC

1) EDS

2) Imaging detectors

3) Magnifcation

4) Probe current
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