SI Traceable Diffraction Measurements on the NIST Parallel Beam Diffractometer

Marcus H. Mendenhall,Vanderbilt University James P. Cline, NIST Gaithersburg

Donald Windover, NIST Gaithersburg
Albert Henins, NIST Gaithersburg

Making XRD Traceable

VANDERBILT

Parallel Beam Diffractometer

Overview

- Interchangeable optics and sample stages
- Vertical axes, concentrically mounted Huber 430 rotation stages
- Heidenhain RON 905 optical encoders on primary axes
- Short and long range encoder calibration
- SI-traceable reference crystals

PBD Schematic

Angular Measurements

- Divide angular domain into two problems:
- Short-range errors (coherent with encoder features at $100 \mathrm{deg}^{-1}$) caused by nonlinearities in the digitizing electronics
- Long-range errors caused by scale errors in the encoder wheel, eccentricity, etc.
- Avoid use of undocumented internal angular corrections from manufacturer
\square

Short-Period Compensation

- Scan a diffractometer axis at (roughly) uniform speed
- monitor encoder results as a function of time
- transform to deviations from linear as a function of angle
- these deviations include screw errors, motor speed variations, all kinds of noise

Scan Angle deviation vs. time

Deviations have Periodic Structure

VANDERBILT

Example Fourier Spectrum

- Strong peaks at multiples of 100/deg
- Also at motor and gearing frequencies!
- Inset shows how a near collision of gearing and real peak is very well resolved

Extracted Short-period Correction

- Analyze as harmonic series of encoder feature period at 100 features/deg
- Demodulated from 100/deg signal to show coefficients as a function of angle, not correction as a function of angle

Circle Closure Calibration

- Concept
- compare sums of angles, subject to constraints that full circle is 360°
- Two general methods
- use polygonal mirror on single stage to provide set of very stable angle offsets
- use 'virtual polygon' and stacked stages and solve for offsets

The Virtual Polygon

$$
\theta_{\text {mirror }}=2 \theta+\omega+\theta_{\text {ring }} \equiv 0
$$

$$
2 \theta_{\text {meas }}+\Delta 2 \theta+\omega_{\text {meas }}+\Delta \omega+\theta_{\text {ring }}=0
$$

$$
2 \theta_{\text {meas }}+\omega_{\text {meas }}+\theta_{\text {ring }}=-\Delta 2 \theta-\Delta \omega
$$

Details of Virtual Polygon

- For a given ring setting $\theta_{r, n}$ measure a set of angle errors $\left\{\Delta 2 \theta_{n, m}\left(2 \theta_{m}\right)+\Delta \omega_{n, m}\left(-2 \theta_{m}-\theta_{r, n}\right)\right\}$ for (typically) 36 approximately equally spaced 2θ values and corresponding ω values which null the autocollimator (n indexes ring, m indexes 2θ)
- repeat for at least 3 ring settings, to give enough degrees of freedom to solve for $\Delta 2 \theta, \Delta \omega$, and the θr associated with each group.
- Do least squares fit for parameters

Circle Closure Results

Fri Mar 22 16:56:08 2013

Visualization of Error Sum

Spectrum Measurement (the future...)

- Next Step: measure spectrum through our optics, with fully traceable steps
- use 'beam walking' technique in combination with Dectris detector array to map out properties
- requires traceable lattice constants on diffractive optics. These optics are already fabricated.
\square

Beam Walking Experiment

- Measure angular geometry of beam in non-dispersive configuration (top)
- Measure spectrum of beam in dispersive configuration (bottom)
- Depends on fully qualified angle metrology from compensation and circle closure
- Fast, using Dectris Pilatus 2-D detector array

