

Development and Certification of NIST Standard Reference Materials for Powder Diffraction

James P. Cline

David Black, Donald Windover Robert B. Von Dreele¹, Ryan Winburn², Peter W. Stephens³ and James J. Filliben & Albert Henins

> National Institute of Standards and Technology Gaithersburg MD, USA

> > ¹Argonne National Laboratory Argonne, IL

> > > ²Minot State University Minot, ND

³State University of New York at Stony Brook Stony Brook, NY

Robert W. Cheary

Richard D. Deslattes

APD-IV, NIST, April 22, 2013 #1

Calibration of Diffraction Line Position

Qualitative phase analyses:

Improved performance of search/match algorithms

APD-IV, NIST, April 22, 2013 #2

Calibration for Instrument Response

SRM 1976b: Suitable laboratory diffractometers using conventional data analysis methods

Quantitative Phase Analyses

SRM 676a, alumina powder, certified with respect to absolute phase purity

$$\frac{\alpha}{I_{s}^{rel}} \left(\frac{I_{js}^{rel}}{I_{i\alpha}^{rel}} \right) RIR_{\alpha,s} = \frac{X_{\alpha}}{X_{s}}$$

Reference Intensity Ratio, RIR, (Internal Standard) Method

I/Ic, the **RIR** of a given phase relative to AI_2O_3 (corundum), Parameter included in ICDD database

Boundary of any crystalline solid will include an amorphous component Ultimate measurement issue: Crystalline phase purity

Rietveld Analysis of Powder Diffraction Data

Rigorous modeling of all aspects of the diffraction experiment for crystal structure analysis

Microstructure Analysis via Powder Diffraction

Crystallite size and lattice defect induced broadening of diffraction profiles

Certification of NIST Diffraction SRMs

A technical approach with four primary facets

NIST SRMs for X-ray Wavelength Metrology

SRM	Material / Format	Diffraction Application	Unit Size (g)	
640d	Silicon Powder	Line Position & Line Profile	7.5	
675	Mica Powder	Line Position, Low 20	7.5	
2000	Silicon (100) Wafer with SiGe Epilayer	High-Resolution Line Position & Reflectometry	25 mm square	
660b	LaB ₆ Powder	6		
1979	ZnO Powders	Line Profile, 20 nm & 70 nm	3	
1976b	Sintered Alumina Plate	Instrument Response	2.5 cm disc	
676a	Alumina (corundum) Powder	Quantitative Analysis	20	
674b	Powder Set: ZnO, TiO ₂ , CeO ₂ , & Cr ₂ O ₃	Quantitative Analysis	10 (each)	
1878a	Respirable Quartz Powder	Quantitative Analysis	5	
1879a	Respirable Cristobalite Powder	Quantitative Analysis	5	
656	Silicon Nitride: α & β Powders	Quantitative Analysis 10 (each)		

APD-IV, NIST, April 22, 2013 #9

Parallel Beam Diffractometer (PBD)

SI traceability / accuracy in wavelength and lattice parameter measurement

Measurement capability in HRXRD, XRR, and powder diffraction

Interchangeable optics and sample stages

Vertical axes, concentrically mounted Huber 430 rotation stages

Heidenhain RON 905 optical encoders on primary axes

Short and long range encoder calibration

SI-traceable reference crystals

Located in temperature controlled environment ≈ ±0.02° C

SI Traceable Measurement of Lattice Parameters on Powders with PBD

Performance of Mirror Optic Determined via Double Crystal diffraction

Reciprocal space map illustrates divergence between $K\alpha_1$ and $K\alpha_2$ beam directions

National Institute of

NIST – Built Divergent Beam Diffractometer (DBD)

Conventional divergent beam optics with high-performance goniometer

Second optical platform for corroboration of SI traceable measurements

Homogeneity verification Studies of data analysis methods Microstructure analysis

Optics from Siemens D5000 / D500

Huber 420 rotation stages

Heidenhain RON 800 series optical encoders on primary axes

Interchangeable optics, Incident beam monochromator

Linear PSD

Located in a temperature controlled environment ≈ ±0.1° C

> National Institute of Standards and Technology

Overhead diagram of DBD

Stiff and Balanced Detector Arm

National Institute of Standards and Technology U.S. Department of Commerce

APD-IV, NIST, April 22, 2013 #15

Fundamental Parameter Approach (FPA) to Analysis of Powder Diffraction Data

Cheary & Coelho (1992, 1998) as implemented in TOPAS

Geometric instrument contribution characterized with a series of explicit physical models linking instrument geometry to the observed profile

Current CuKα Emission Spectrum Characterization

APD-IV, NIST, April 22, 2013 #17

Observation of Tube Tails & "Ka3" Satellite Lines

Proper modeling of tube tails critical for microstructure analysis

NIST – Built DBD Configured with Johansson IBM

Divergent beam optics with "monochromatic" source

Siemens D500 tube shield with Huber 502 optic alignment: Features fully orthogonal adjustment capability

> Modern Crismatec Johansson optic

APD-IV, NIST, April 22, 2013 #20

Performance of Johansson IBM

Crismatec (Saint Gobain) Johansson optic Ge 111 crystal bent via cementing in pre-form

APD-IV, NIST, April 22, 2013 #21

Fits of Split Pearson 7 PSF to IBM data

FWHM data from SRMs 640d, 660b and 1976b

FWHM values follow trends consistent with expectations as per contributions from Geometric and Wavelength Profiles

APD-IV, NIST, April 22, 2013 #23

National Institute of

Parameters Affecting Geometric Profile

Divergent beam laboratory X-ray powder diffractometer

Aberrations Contributing to Geometric Component

May affect both profile shape and position

Aberration	Controlling parameters	Impact	
X-ray Source Width (w_x)	Angle subtended by source: $\frac{w_x}{R}$	Symmetric broadening	
Receiving Slit Width (w_r)	Angle subtended by slit: $\frac{W_r}{R}$	Symmetric broadening	
Flat Specimen Error / Equatorial Divergence	Angle of divergence slit: α	Asymmetric broadening to low 20, with decreasing 20	
Axial Divergence		Below ≈ 110°:	
Case 1: No Soller slits	Axial lengths of the x-ray source (L _x) sample (L _s) & receiving slit (L _r) relative to goniometer radius (R)	Asymmetric broadening to low 2θ , with decreasing 2θ	
Case 2: Soller slits define divergence angle	Acceptance angles Δ_{I} and Δ_{D} of the incident and diffracted beam Soller slits	with increasing 20	
Specimen transparency	Penetration factor relative to diffractometer radius1 μR	Asymmetric broadening to low 2θ, with Sin(θ)	
Specimen Displacement Z height	Displacement of specimen surface from goniometer rotation axes	Displacement of profiles with 1/Cos(θ)	

Diagram of an Aligned X-ray Diffractometer

Functionality of FPA dependent on proper alignment

Requisite on:

- 1) Source-to-sample distance equals sample-to-receiving slit distance $(R_1 = R_2)$
- 2) X-ray line source, sample, and receiving slit centered in plane of diffraction
- 3) Goniometer rotation axes are co-axial
- 4) X-ray line source, sample surface, receiving slit, and goniometer rotation axes are co-planar, in the "zero" plane, at zero angle of theta and two-theta
- 5) Incident beam is centered on both equatorial and "zero" planes

X-rays off

X-rays on

National Institute of Standards and Technology

Data Analysis Strategy

Determine extent and nature of flaws in FPA model

Compare refined lattice parameters from FPA Rietveld analysis with those from FPA "Profile" analysis

Always refine parameters that are indeterminate

Sometimes refine parameters that are known or essentially invariant between standards and unknowns

Never refine parameters that well known and correlate with unknowns

Always Refine:

Axial divergence value [inc and rec values constrained to identity] Z height Specimen transparency Position & intensity of Ka₂ lines Structural model(s) Microstructure model(s) Sometimes Refine:

Breadth of $K\alpha_1$ and $K\alpha_2$ lines Inc and rec slit values "Tube Tail" parameters "K α_3 " line intensity

Never Refine:

Zero angles

ⁱ Fundamental Parameters Analysis of SRM 660b

FPA "profile" analyses: Profile positions (lattice parameters) free to refine, FPA shape parameters constrained

APD-IV, NIST, April 22, 2013 #29

Comparison of Lattice Parameter Data from FPA Rietveld vs. Profile

No Complaints; However, trends are indicated

⁶ Comparison of Lattice Parameter Data from FPA Rietveld vs. Profile: Certification of SRM 660b

Type A (statistical) vs. Type B (systematic) error bounds

APD-IV, NIST, April 22, 2013 #31

Finite Element Analysis of Change in Torque Moment with Rotation of Two-Theta Arm

APD-IV, NIST, April 22, 2013 #32

Quantitative Rietveld Analysis, QRA

Diffraction experiment assesses crystalline component only

Selection of an Alumina Powder for use as an Internal Intensity (Quantitative Analysis) Standard

I/I_c Proposed by Visser and deWolff (1964)

Property included in ICDD database; hence SRM 676(x)

Desired characteristics of SRM feedstock

- strong lines over a wide d-space range
- stability
- inertness
- equi-axial (non-orienting) particles
- particle size in the one micrometer range: microabsorption (Brindley, 1945)
- small diffracting domains: primary extinction (Zachariasen, 1945)

Selection of an Alumina Powder for use as an

2µm 10000X

2µm 10000X

Internal Intensity Standard

Commercial Alumina Production 95% via Bayer process:

Dynys and Halloran (1982) :

SRM 676a Feedstock Consists of Baikalox* CR1

APD-IV, NIST, April 22, 2013 #37

Determination of Amorphous Fraction I

Diffraction experiment: crystalline fraction only Weighing operation: all constituents

Experimental Design

No possibility for phase pure reference material Vary impurity level in systematic manner Engineer microstructure so as to ensure said variation

Single crystal reference material; as per silicon of SRM 640c Amorphous material restricted to surface (oxide) layer Surface layer of uniform thickness, invariant with respect to particle size Variation of particle size / surface area in series of single crystal powders Diffraction experiments on series of two phase mixtures, reference vs. test Extrapolate diffraction results to reference phase of "zero" amorphous content Compare diffraction result from test phase to mass fraction of weighing operation

Refined Mass Fraction Silicon

0.35

0.30

0.25

0.20

Determination of Amorphous Fraction II

Execution

Comminute silicon to broad size distribution & anneal Fractionate into five lots from 5 - 25 micrometers Measure surface area & particle size Prepare 4 X 50-50 mixtures, plus SRM 640c

Accurate diffraction experiments

Multiple diffraction methods/facilities

Surface Area

Address extinction effects within QRA

Plot refined mass fraction silicon vs. surface area

Extrapolate mass fraction trend to a silicon with "zero" surface area
Contrast with 50-50 mass fraction: phase purity of SRM 676a
Slope yields oxide layer thickness on silicon

Microstructure Data on the Five/Six Lots of Silicon

Sieve Fraction	SRM 640c	< 5 μm	5 < 10 μm	10 < 15 μm	15 < 20 μm	20 < 25 μm
Particle Size, µm	4.44	5.28	9.81	14.47	19.24	23.98
Surface Area, m ² /g	1.40	1.50	0.70	0.41	0.31	0.27

Annealed in gettered argon at 1000°C for 2 h, van Berkum, et al. (1995)

- Electro-deposited sieves, 5,10,15,20 & 25 µm
- Sieved in anhydrous isopropyl alcohol, wash w/ dilute nitric acid
- Size distribution via laser scattering
- Surface area via BET adsorption, krypton

Image of Equipment Used for Annealing of Silicon in ultra-low P_{O_2} Ar

Silicon oxide surface layer reduced to elemental silicon

National Institute of Standards and Technology U.S. Department of Commerce

APD-IV, NIST, April 22, 2013 #41

Primary Extinction

Dynamical scattering theory

Reduction in intensity due to destructive interference of standing waves

Zachariasen: R = Q f(A)

- R diffraction intensity
- Q intensity per unit volume
- f(A) diffraction geometry

$$A = \frac{e^2 \lambda F t}{mc^2 V}$$

 λ wavelength

F structure factor

T nominal crystal/domain dimension

V unit cell volume

Neutron Time-of-Flight: refine extinction parameter via Sabine model (1985)

High-energy X-ray diffraction: no extinction???

Data Collection

Neutron Time-of-Flight

SEPD, IPNS

Exposed for 2 h at 13 μA and 30Hz, d-space range: 0.05 nm to 0.39 nm 25 keV X-ray

32 IDB, APS, eight detector machine, 0.8 mm spun kapton capillary 6° to 51° 2Θ, 0.0005° sw, 1 s ct, d-space range: 0.058 nm to 0.474 nm

67 keV X-ray

X17B1, NSLS, focusing optics, 1.0 mm spun glass capillary 2.7° to 12° 2Θ, 0.001° sw, 1 s ct, d-space range: 0.0890 nm to 0.393 nm

8 keV Laboratory X-ray

Siemens D500, Ge focusing IBM, sample spinner & PSD 20° to 154° 20, 0.75° /min, d-space range: 0.079 nm to 0.44 nm

Data Analysis: Rietveld code GSAS

Minimize number of refined parameters

Four joint refinements

Constrain structural parameters across 24 specimens Microstructural parameters constrained for alumina Microstructural & extinction parameters constrained within each lot of silicon

APD-IV, NIST, April 22, 2013 #44

SRM 676a Certification Data

SRM 676a 99.02% ±1.11% phase pure alumina

APD-IV, NIST, April 22, 2013 #45

National Institute of

X-ray Data With / Without Extinction Correction

Extinction effects illustrated at $< 5 \,\mu m$ particle size range & 67 keV

APD-IV, NIST, April 22, 2013 #46

National Instit

Refined Extinction Domain Sizes

Consistent within each method Inconsistent between methods

APD-IV, NIST, April 22, 2013 #47

National Institute of

Thickness of Oxide (Gunk) Layer on Silicon Powder

Computed from line slope of certification data

Slope	=	Δ mass of Si displaced by SiO ₂ / Δ surface area of Si
	=	0.0061 g/m ² (average slope of TOF, 25 & 67 keV data sets)
Density of SiO ₂	=	$2.2 \text{ g/cm}^3 = 0.45 \text{ cm}^3/\text{g}$
Layer thickness	=	0.0061 (g/m ²) * 0.45 (cm ³ /g) * 10 ⁻⁶ (cm ³ /m ³)
	=	0.0028 (cm ³ /m ²) * 10 ⁻⁶ (cm ³ /m ³)
Layer thickness	=	2.8 * 10 ⁻⁹ m = 2.8 nm

Generally accepted value for thickness of self-limiting oxide layer on silicon under ambient conditions is 1.5 nm

Conclusions

The divergent beam diffractometer has yielded lattice parameter values that are credible to ± 8 femtometers

We look forward to results from the parallel beam diffractometer

The *Fundamental Parameters Approach* yields the best fits to the observations and plausible refined parameters describing the experimental configuration

NIST quantitative analysis SRM 676a certified for amorphous content

SRM 676a now permits measurement of layer thickness or amorphous content in unknowns

Extinction affects diffraction intensity measurements with both small domain sizes and high energy radiation

