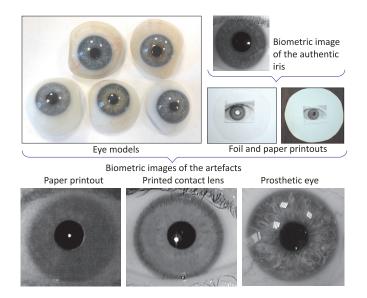
Pupil dynamics for presentation attack detection in iris recognition


Adam Czajka

Biometric Laboratories NASK & Warsaw University of Technology

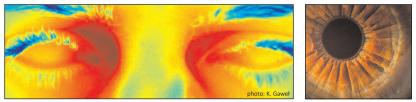
International Biometric Performance Conference Gaithersburg, April 1-3, 2014

Adam Czajka | IBPC 2014 | 1/24

Static eye imitations

Adam Czajka | IBPC 2014 | 2/24

Static eye imitations


1. Static 2D images

- paper and foil printouts
- images displayed on a screen (hypothetical)
- simple but alarming: possible impersonation of a given eye
- 2. Static 3D objects
 - authentic eye + printed contact lens
 - prosthetic eyes
 - impersonation difficult or impossible; typical aim: disturbing an iris pattern to cause a false rejection

Countermeasures for static eye imitations

1. Passive measurement

- 2D liveness features: frequency analysis, use of local binary patterns, use of thermal data
- 3D liveness features: eyeball shape, iris tissue structure, Purkinje reflections
- 2. Active measurement
 - positions of stimulated NIR reflections
 - tissue absorption for different NIR wavelengths

Example thermal image of the eyes (left) and 3D structure of the iris (right)

Adam Czajka | IBPC 2014 | 4/24

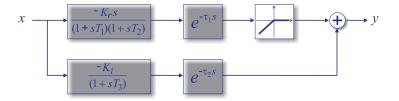
- 1. Deformable objects with printed iris patterns
- 2. Movies displayed on a screen, off-line or on-line (hypothetical)
- 3. Image capture under coercion

Dracula (2000)

Minority report (2002)

Bad company (2002)

Countermeasures for dynamic eye imitations

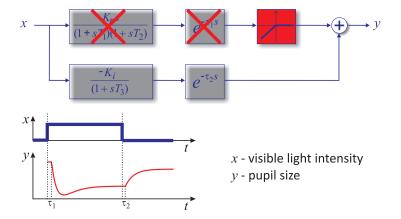

1. Passive measurement: analysis of involuntary activities of the eye

- spontaneous oscillations of the pupil size
- detection of spontaneous blinks
- 2. Active measurement:

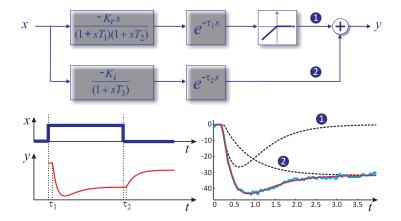
use of voluntary activities of the eye

- gaze detection when following moving objects
- eyeball dynamics (analysis of fixations and saccades)
- pupil dynamics (modeling of pupil size variations when stimulated by visible light)


Liveness features: channel gains (K_i, K_r) , time constants (T_1, T_2, T_3) and delays (τ_1, τ_2)


x - visible light intensity y - pupil size

Adam Czajka | IBPC 2014 | 7/24


Liveness features: channel gains (K_i, K_r) , time constants (T_1, T_2, T_3) and delays (τ_1, τ_2)

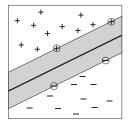
Liveness features: channel gains (K_i, K_r) , time constants (T_1, T_2, T_3) and delays (τ_1, τ_2)

Liveness features: channel gains (K_i, K_r) , time constants (T_1, T_2, T_3) and delays (τ_1, τ_2)

Adam Czajka | IBPC 2014 | 10/24

Modeling of pupil dynamics Model identification (finding a best fit)

$$\widehat{\phi} = \operatorname*{argmin}_{\phi \in \Phi} \sum_{i=1}^{N} (\widehat{y}_{i;\phi} - y_i)^2$$


where:

$$\begin{split} \phi &= [K_r, K_i, T_1, T_2, T_3, \tau_1, \tau_2]^T - \text{liveness features} \\ \Phi &- \text{set of possible values of } \phi \\ \widehat{\phi} &- \text{identified liveness features} \\ \widehat{y}_{i;\phi} &- \text{model output given the liveness features } \phi \\ y_i &- \text{actual (observed) change of the pupil size} \\ N &- \text{length of the observed sequence} \end{split}$$

Processing of the modeling outcomes

1. Classification

- use of Support Vector Machine to classify samples in ϕ -space
- SVM maximizes the gap between samples of different classes
- SVM may solve linear and non-linear problems (use of 'kernel trick')

- 2. Goodness of fit
 - use of normalized root mean square error

$$\mathsf{GoF} = 1 - \frac{\|\widehat{y}_{\phi} - y\|}{\|\widehat{y}_{\phi} - \bar{y}\|}$$

where \bar{y} is an average of y.

Adam Czajka | IBPC 2014 | 12/24

Question 1: How to simulate odd reactions of the eye?

- using static objects \rightarrow we're doomed to succeed
- simulation of the coerced use \rightarrow not really feasible

Adam Czajka | IBPC 2014 | 13/24

Question 1: How to simulate odd reactions of the eye?

- using static objects \rightarrow we're doomed to succeed
- simulation of the coerced use \rightarrow not really feasible

Question 2: Should we uncritically rely on classifier output?

• misclassifications always happen, so what about other metrics, e.g. goodness of fit?

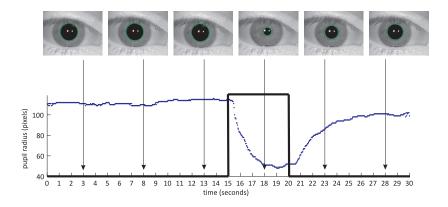
Question 1: How to simulate odd reactions of the eye?

- using static objects \rightarrow we're doomed to succeed
- simulation of the coerced use \rightarrow not really feasible

Question 2: Should we uncritically rely on classifier output?

• misclassifications always happen, so what about other metrics, e.g. goodness of fit?

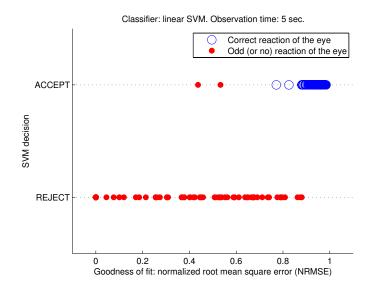
Question 3: How long shall we observe the eye?


• larger times give better modeling, but decrease usability

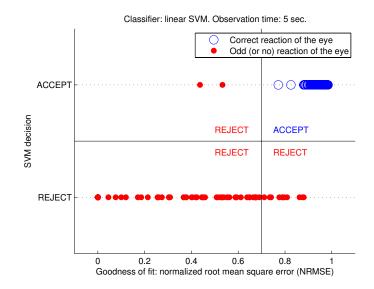
Database of eye reactions to light changes Re: Question 1 (How to simulate odd reactions of the eye?)

1. Collection of samples

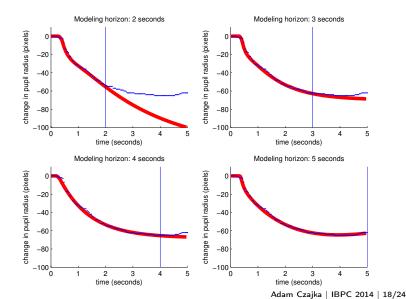
- involuntary pupil oscillations under no light changes
- pupil reaction to positive and negative jumps in light intensity
- N = 25 volunteers \times 2 eyes \times K = 4 samples = 200 samples
- 2. Representatives of actual and odd reactions
 - involuntary pupil oscillations as odd reactions
 - stimulated changes in pupil size as actual reactions
 - pupil modeled as a circle; pupil size = circle radius
- 3. Division of dataset into training and testing subsets
 - leave-one-out cross-validation
 - 'one' relates to the person, not a single sequence
 - N divisions; in each division: 2(N-1)K training samples and 2K testing samples


Database of eye reactions to light changes Re: Question 1 (How to simulate odd reactions of the eye?)

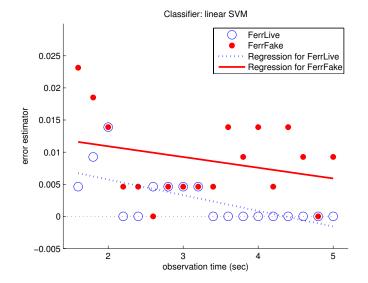
Adam Czajka | IBPC 2014 | 15/24


Decisions of linear SVM

Observation time: 5 seconds

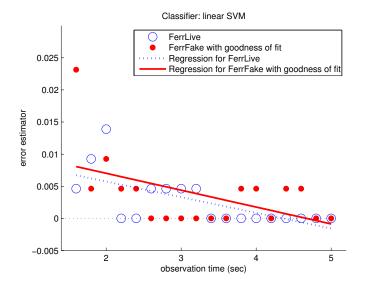

Adam Czajka | IBPC 2014 | 16/24

Decisions of linear SVM + goodness of fit Re: Question 2 (Should we uncritically rely on classifier output?)

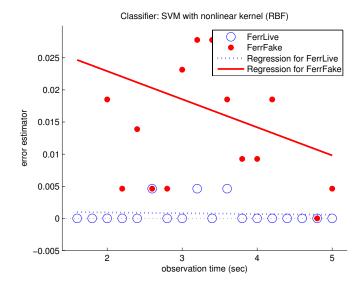


Adam Czajka | IBPC 2014 | 17/24

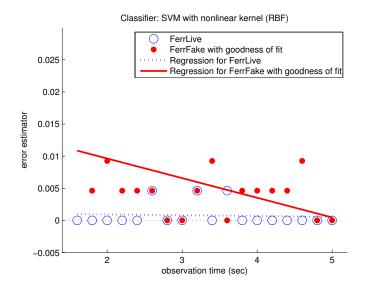
Modeling horizon (observation time) Re: Question 3 (How long shall we observe the eye?)



FerrLive and FerrFake vs. observation time Linear SVM, goodness of fit not considered


Adam Czajka | IBPC 2014 | 19/24

FerrLive and FerrFake vs. observation time Linear SVM, goodness of fit considered


Adam Czajka | IBPC 2014 | 20/24

FerrLive and FerrFake vs. observation time SVM with Gaussian kernel, goodness of fit not considered

Adam Czajka | IBPC 2014 | 21/24

FerrLive and FerrFake vs. observation time SVM with Gaussian kernel, goodness of fit considered

Adam Czajka | IBPC 2014 | 22/24

- 1. Dynamics of the pupil delivers interesting liveness features
- 2. Depending on the assumed dynamics of fake objects, linear classification seems to be sufficient to recognize artefacts
- Having a few additional seconds (≥ 3) while capturing the iris may provide almost perfect recognition of actual and odd behavior of the pupil

Adam Czajka, Ph.D. aczajka@elka.pw.edu.pl

Biometrics Labratory Research and Academic Computer Network (NASK) Warsaw, Poland

Biometrics and Machine Learning Laboratory Warsaw University of Technology Warsaw, Poland

