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Static eye imitations 



Static eye imitations 

1. Static 2D images 
• paper and foil printouts 
• images displayed on a screen (hypothetical) 
• simple but alarming: possible impersonation of a given eye 

2. Static 3D objects 
• authentic eye + printed contact lens 
• prosthetic eyes 
• impersonation diÿcult or impossible; typical aim: disturbing an 

iris pattern to cause a false rejection 
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Countermeasures for static eye imitations 

1. Passive measurement 
• 2D liveness features: frequency analysis, use of local binary 

patterns, use of thermal data 
• 3D liveness features: eyeball shape, iris tissue structure, 

Purkinje refections 

2. Active measurement 
• positions of stimulated NIR refections 
• tissue absorption for di˙erent NIR wavelengths 

Example thermal image of the eyes (left) and 3D structure of the iris (right) 
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Dynamic eye imitations 

1. Deformable objects with printed iris patterns 

2. Movies displayed on a screen, o˙-line or on-line (hypothetical) 

3. Image capture under coercion 
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Countermeasures for dynamic eye imitations 

1. Passive measurement: 
analysis of involuntary activities of the eye 

• spontaneous oscillations of the pupil size 
• detection of spontaneous blinks 

2. Active measurement: 
use of voluntary activities of the eye 

• gaze detection when following moving objects 
• eyeball dynamics (analysis of fxations and saccades) 
• pupil dynamics (modeling of pupil size variations when 

stimulated by visible light) 
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Modeling of pupil dynamics 
Clynes -Kohn nonlinear model 

Liveness features: channel gains (Ki, Kr), 
time constants (T1, T2, T3) and delays (˝1, ˝2) 
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Modeling of pupil dynamics 
Model identifcation (fnding a best ft) 

NX b° = argmin (ybi;° − yi)
2 

°2� i=1 

where: 

° = [Kr,Ki, T1, T2, T3, ˝1, ˝2]
T – liveness features 

� – set of possible values of ° 
b° – identifed liveness features 
ybi;° – model output given the liveness features ° 
yi – actual (observed) change of the pupil size 
N – length of the observed sequence 
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kyb° − yk 
GoF = 1 − 

kyb° − ȳk 

Processing of the modeling outcomes 

1. Classifcation 
• use of Support Vector Machine to 

classify samples in °-space 
• SVM maximizes the gap between 

samples of di˙erent classes 
• SVM may solve linear and non-linear 

problems (use of ‘kernel trick’) 

2. Goodness of ft 
• use of normalized root mean square error 

where ȳ  is an average of y. 
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Questions 

Question 1: How to simulate odd reactions of the eye? 
• using static objects → we’re doomed to succeed 
• simulation of the coerced use → not really feasible 
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Database of eye reactions to light changes 
Re: Question 1 (How to simulate odd reactions of the eye?) 

1. Collection of samples 
• involuntary pupil oscillations under no light changes 
• pupil reaction to positive and negative jumps in light intensity 
• N = 25 volunteers × 2 eyes × K = 4 samples = 200 samples 

2. Representatives of actual and odd reactions 
• involuntary pupil oscillations as odd reactions 
• stimulated changes in pupil size as actual reactions 
• pupil modeled as a circle; pupil size = circle radius 

3. Division of dataset into training and testing subsets 
• leave-one-out cross-validation 
• ‘one’ relates to the person, not a single sequence 
• N divisions; in each division: 2(N − 1)K training samples and 
2K testing samples 
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Database of eye reactions to light changes 
Re: Question 1 (How to simulate odd reactions of the eye?) 



 

 
Classifier: linear SVM. Observation time: 5 sec. 
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Goodness of fit: normalized root mean square error (NRMSE) 

Decisions of linear SVM 
Observation time: 5 seconds 
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Decisions of linear SVM + goodness of ft 
Re: Question 2 (Should we uncritically rely on classifer output?) 
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Modeling horizon: 2 seconds 
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Modeling horizon: 3 seconds 
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Modeling horizon: 4 seconds 
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Modeling horizon (observation time) 
Re: Question 3 (How long shall we observe the eye?) 
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Classifier: linear SVM 
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Linear SVM, goodness of ft not considered 
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Classifier: SVM with nonlinear kernel (RBF) 

−0.005 

0 

0.005 

0.01 

0.015 

0.02 

0.025 

e
rr

o
r 

e
s
ti
m

a
to

r 

FerrLive 

FerrFake 

Regression for FerrLive 

Regression for FerrFake 

observation time (sec) 
2 3 4 5 

FerrLive and FerrFake vs. observation time 
SVM with Gaussian kernel, goodness of ft not considered 
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Conclusions 

1. Dynamics of the pupil delivers interesting liveness features 

2. Depending on the assumed dynamics of fake objects, linear 
classifcation seems to be suÿcient to recognize artefacts 

3. Having a few additional seconds ( 3) while capturing the iris 
may provide almost perfect recognition of actual and odd 
behavior of the pupil 
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