Emerging Solutions in

Time Synchronization Security

Karen O'Donoghue, odonoghue@isoc.org

IEEE/NIST Challenges in the Smart Grid Workshop, 7 September 2014

Agenda

- Why Security Now?
- Requirements
- What currently exists?
- IEEE 1588
- IETF NTP NTS
- Next steps and parting thoughts...

Why Security Now?

Increasing interconnection and decentralization

Increasing evidence of the impact of inadequate security

Interdependency between security and time

Legal and Compliance requirements

Requirements for Time Synchronization Security

- RFC 7384: Security Requirements of Time Protocols in Packet Switched Networks, Oct 2014
 - Threat model
 - Internal versus external attacker
 - Man-in-the-middle versus injection
 - Threats
 - Requirements analysis
- IEEE 1588 requirements analysis
 - https://ieee-sa.centraldesktop.com/1588/file/27229936/
 - (contact me for access to this document if necessary)

RFC 7384: Threats

- Manipulation of time synchronization packets,
- Masquerading as a legitimate participant in the time synchronization protocol,
- Replay of legitimate packets,
- Tricking nodes into believing time from the wrong master,
- Intercepting and removing valid synchronization packets,
- Delaying legitimate time synchronization packets on the network,
- Denial of service attacks on the network at layer 2 and layer 3,
- Denial of service by overloading the cryptographic processing components,
- Denial of service by overloading the time synchronization protocol,
- Corruption of the time source used by the grand master,
- Protocol design and implementation vulnerabilities, and
- Using the time synchronization protocol for broader network surveillance and fingerprinting types of activities.

RFC 7384: Requirements

- Authentication and authorization of a clock's identity,
- Integrity of the time synchronization protocol messages,
- Prevention of various spoofing techniques,
- Protection against Denial of Service (availability),
- Protection against packet replay,
- Timely refreshing of cryptographic keys,
- Support for both unicast and multicast security associations,
- Minimal impact on synchronization performance,
- Confidentiality of the data in the time synchronization messages,
- Protection against packet delay and interception, and
- Operation in a mixed secure and non-secure environment.

What currently exists?

- Network Time Protocol (NTP)
 - Pre-shared key scheme for server authentication in the core specification (scaling issues)
 - Autokey Authentication of time servers using PKI (known flaws)
- IEEE 1588 Precision Time Protocol
 - Annex K Group source authentication, message integrity, and replay attack protection (defined as Experimental, flaws identified)

Proposed IEEE 1588 Security Approach

- IEEE 1588 security will include a set of mechanisms and tools that can be used together or individually.
- Individual mechanisms will be optional.
- The specific mechanisms chosen will vary by application and environment.

IEEE 1588 Security

The multi-pronged approach:

- PTP Integrated Security Mechanisms (Prong A)
- External Transport Security Mechanisms (Prong B)
- Architecture Guidance (Prong C)
- Monitoring and Management Guidance (Prong D)

PTP Integrated Security Mechanism (Prong A)

- TLV definition and processing rules (proposed option within IEEE 1588)
- Guidance of key management schemes (informative)

PTP Integrated Security Mechanism (Prong A): PTP Security TLV

External Transport Security Mechanisms (Prong B)

MACSec

- Based on IEEE 802.1AE Media Access Control (MAC) Security
- Integrity protection between two IEEE 802 ports
- Key management is manual or based on MACsec Key Agreement (MKA) specified in IEEE 802.1X-2010.

IPSec

- Base architecture defined in IETF RFC 4301
- Node authentication and key exchange defined in RFC 7296
- Integrity checking and encryption of data defined in RFC 4303

Architecture Guidance (Prong C)

- Redundancy
 - Redundant timing systems
 - Redundant PTP grandmasters
 - Redundant paths

- Inherent measurements
 - Delay and offset measurements

Monitoring and Management Guidance (Prong D)

- Definition of parameters in IEEE 1588 data sets that can be monitored to detect security problems
- A recommendation to not use unsecure management protocols including IEEE 1588 native management

IETF Network Time Security (NTS)

NTS – Work in Progress

Original core set of documents

- Generic approach: draft-ietf-ntp-network-time-security
- Mapping of NTS to NTP: draft-ietf-ntp-using-nts-for-ntp
- Protecting NTS with CMS: draft-ietf-ntp-cms-for-nts-message

Additional documents under discussion

- DTLS mechanism for NTP: draft-dfranke-nts
- Improving privacy for NTP: draft-dfranke-ntp-data-minimization
- Evaluation of MAC algorithms for use with NTP: draft-aanchal4ntp-mac

IETF Network Time Security (NTS)

Recent Decisions (still to be confirmed by NTP WG):

- Key Exchange Protocol
 - No custom key exchange being defined
 - Combination of DTLS and TLS in different combinations:
 - For client/server mode, TLS out of band to establish keys, transmission of timing information over UDP/123
 - For symmetric mode, TLS (or DTLS) on port other than UDP/123 to establish keys, transmission of timing information over TLS
 - For control mode, DTLS on port other than UDP/123 to establish keys
- Privacy requirement to prevent linkability
 - Need to address in base NTP as well as NTS

Merge of NTS for NTP draft with new proposal

Best Practices

- There are a number of best practices that when applied to systems can improve their security posture.
- Both IEEE 1588 and NTP are addressing these types of topics:
 - IEEE 1588 additional section in draft annex
 - IETF NTP proposed BCP: draft-ietf-ntp-bcp

Next Steps

- IEEE 1588
 - Complete proposal for next revision of IEEE 1588
 - Continue specification of key management options
- NTS
 - Revise NTS specifications
 - Publish BCP
 - Incorporate additional fixes to base specification (RFC 5905)
- Gather feedback from implementers and users

Final remarks

- Why has this been so hard?
- When will we be done?

 Hopefully these solutions will be aligned to help development, deployment, and operation!

- Contact me if you are interested in helping:
 - Karen O'Donoghue, odonoghue@isoc.org

