

Strength of Authentication for Biometrics: An Evaluation Framework

Elaine Newton, NIST
Colin Soutar, Deloitte & Touche LLP

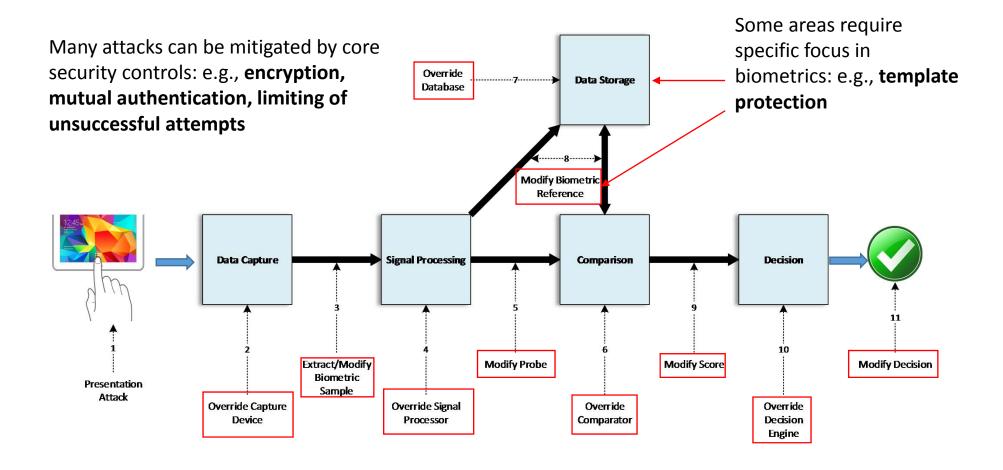
Agenda

- Background on the Advanced Identity Workshop:
 Applying Measurement Science in the Identity Ecosystem
- Purpose & Scope
- Approach:
 - Problem Statement
 - System Attack Analysis
 - Zero Information Attack
 - Consider an Additional Factor: Effort
 - Incorporating Effort
 - Strength of Function for Authenticators (SOFA)
 - Ultimate Goal: Comparing & Combining Authentication Technologies

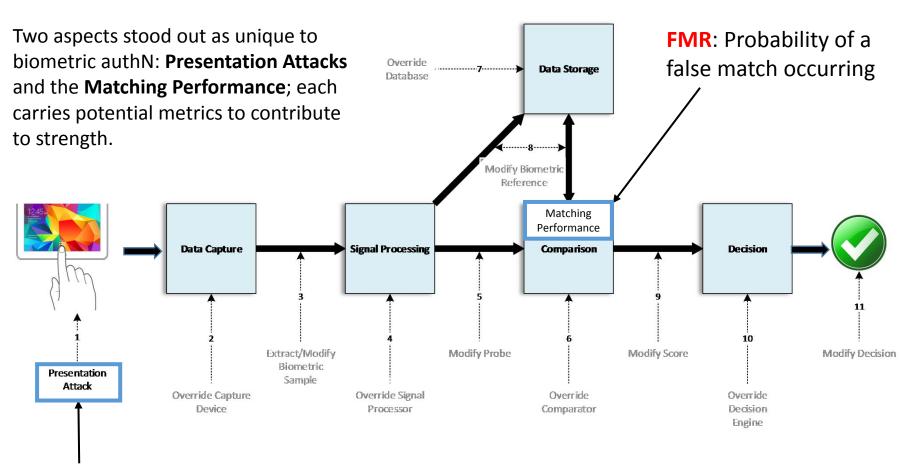
Background on the Advanced Identity Workshop: Applying Measurement Science In the Identity Ecosystem

- January 12-13th @ Gaithersburg
- Focus on quantifying strength of function to enable risk based decisions
- Three focus areas:
 - 1. Strength of Authentication
 - 2. Strength of Proofing
 - 3. Attribute Confidence
- Strength of Authentication will focus initially on measuring the strength of **Biometric Authentication Systems**
- The overall goal of this area is to reach the point where the strength of authentication mechanisms can be measured, compared, and eventually combined
- Why start with biometrics? Growing availability and use.

Purpose & Scope


- Produce a framework for measuring and evaluating the strength of a biometric authentication system that enables:
 - Greater understanding of how much trust can be placed in solutions
 - Better alignment of solutions with assessed risks
- Focus is on positive authentication and one-to-one matching:
 - Does not address watch-list applications
 - Does not deal with situations where users are avoiding identification
- Intended to be modality agnostic
- Framework will be released as a report from NIST, but may be used as contribution to a standards development effort
- Framework will be open for public comment throughout its development

Approach


Problem Statement

- Starting point: What generally accepted measurements exist around "strength" of authenticators?
 - Entropy and the strength of passwords/key length
 - Strength of Function: Common Criteria
- How can we compare strength of biometric authentication mechanisms to each other, and to other types of mechanisms?
 - Can we create a comparable measure in biometrics to entropy or strength of function?
- Can we establish a general framework for comparing different mechanisms?
 - SOFA = Strength of Function for Authenticators

System and Attack Analysis

System and Attack Analysis: Biometric Specific

PAD Error Rate: Probability of a successful presentation attack

Approach

- Isolate the aspects of biometric technologies that can be quantified
- Assume a baseline of "cyber hygiene"
- Inherent biometric strength
 - "Zero information" attacks,
 i.e., the attacker doesn't have the PIN or biometric pattern
 - "Targeted" attacks
- Additional controls (e.g., limiting failed attempts) may be layered on top of the quantified strength to improve the overall security of a system
- What are the relevant factors for the framework?

Zero Information Attack

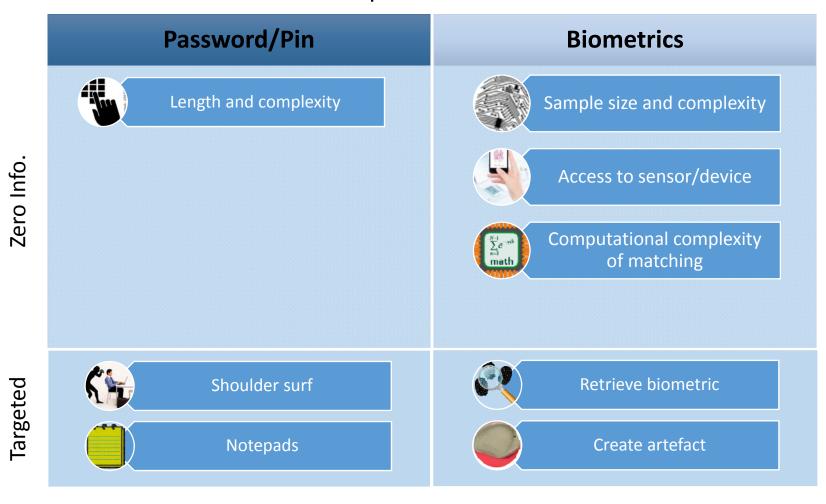
Factors: FMR and PADER

False Match Rate (FMR)

- Proportion of impostor attempt samples falsely declared to match the compared template
- Empirically determined
- Combination of
 - Inherent discrimination
 - signal fidelity; sensor performance; processing and matching capabilities

Presentation Attack Detection Error Rate (PADER)

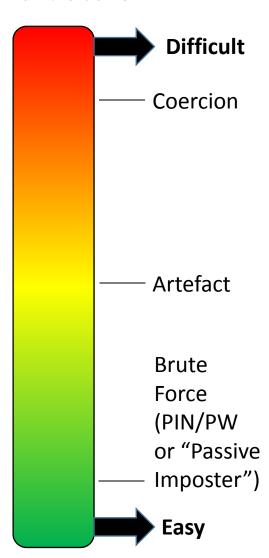
- Proportion of presentation attacks incorrectly classified as bona fide presentations at the PAD subsystem in a specific scenario*
- Error rates and testing being developed in ISO/IEC 30107-3 and FIDO Alliance
- Testing standards and procedures may address...
 - Type of attacks used
 - Number of attempts
 - Types of tests: verifying vendor claims, or full statistical significance trials?


Hypothesis—FMR and PADER can be combined to produce a measure that can be compared to a password's entropy.

Assumption—FMR and PADER are independent of one another.

^{*} This is very similar to the APCER measure used in the draft of ISO/IEC CD 30107-3

Consider an Additional Factor: Effort


 To understand the inherent strength of a biometric system, more than PADER and FMR are required—effort should also be considered

Incorporating Effort

- Effort = Level of effort required to attack specific components of an authentication system.
 - Focuses on the point of input or sensor
 - Requires qualitative assessment and comparison of attacks extending across systems
 - The time, knowledge, and resources required for an attack may contribute to the effort
 - Consequences may also be considered
- Many factors could be incorporated into effort: further exploration required

Effort Scale

Strength of Function for Authenticators (SOFA) Inherent Strength

• Incorporating the FMR, PAD, and effort into a single measure of strength could look something like this:

• In the case of targeted attacks, the measure of strength may look like:

SOFA_{Targeted} (Biometrics)
$$\alpha$$
 Effort $(1 - FNMR) \times PADER$

Ultimate Goal: Comparing & Combining Authentication Technologies

- Goal is to move towards developing metrics that can be compared and combined to better understand authentication systems
- Ultimately, we would be able to determine the same type of measure for most authentication systems

$$SOFA_{Zero\ Info} \ (Biometrics) \quad \alpha \qquad \frac{Effort}{FMR\ x\ PADER}$$

$$SOFA_{Zero\ Info} \ (PIN/PW) \quad \alpha \qquad Effort \quad x \quad N^L$$

Next Steps

- NIST will produce an initial draft document
- Using short, open public comment periods the document will be iteratively reviewed and updated based on community feedback
- NIST will finalize the document and identify the most appropriate venue to forward additional work
- Your feedback is welcomed and encouraged through the entire process! Please send comments to (sofa@nist.gov) or through the comment mechanism during the iterative public review periods

References

- M1.4 AHGBEA Study Report on Biometrics in E-Authentication
- OASIS Analysis of Methods of Trust Elevation Version 1.0 (2013) and Electronic Identity Credential Trust Elevation Framework Version 1.0 (2014)
- ISO 19092:2008 Financial services -- Biometrics -- Security framework
- ISO/IEC 30107-1:2016 Information technology -- Biometric presentation attack detection -- Part 1: Framework
- Committee Draft of ISO/IEC 30107-3 Information technology -- Biometric presentation attack detection -- Part 3: Testing and Reporting
- ISO/IEC 24745:2011 Information technology -- Security techniques -- Biometric information protection
- ISO/IEC 19792:2009 Information technology -- Security techniques -- Security evaluation of biometrics
- "Measuring Strength of Authentication" Workshop: Applying Measurement Science in the Identity Ecosystem
- http://www.commoncriteriaportal.org/

Contributors

NIST

Elaine Newton, PhD

- National Institute of Standards and Technology
- enewton@nist.gov

Kevin Mangold

- National Institute of Standards and Technology
- kevin.mangold@nist.gov

Paul Grassi

- National Institute of Standards and Technology
- •paul.grassi@nist.gov

Contract support to NIST

Colin Soutar, PhD

- Deloitte & Touche LLP Cyber Risk Services
- •csoutar@deloitte.com

Ryan Galluzzo

- Deloitte & Touche LLP Cyber Risk Services
- •rgalluzzo@deloitte.com

Raj Dinh

- Deloitte & Touche LLP Cyber Risk Services
- •abdinh@deloitte.com

Special guest contributions to NIST

Cathy Tilton

- •CSRA Inc.
- •cathy.tilton@csra.com