Use Collaborative Robots to Easily Program Complex Automated 3D Scanning for Dimensional Quality Control (QC) across Supply Chain

> Mingu Kang ARIS Technology Chicago, IL, USA

Problem & Solution

3D measurement (including 3D scanning) is labor intensive and require trained experts.

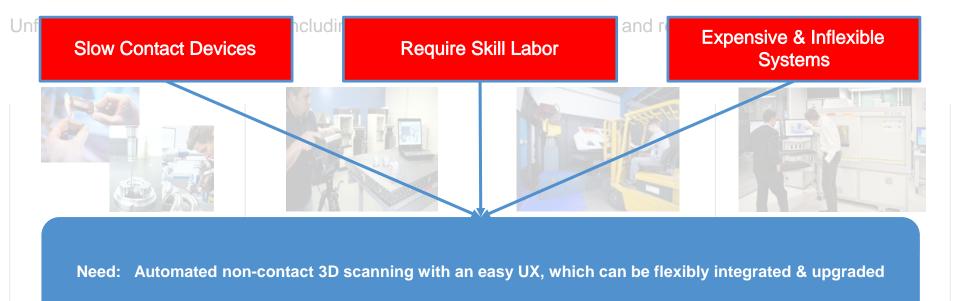
Traditional Methods

Contact based

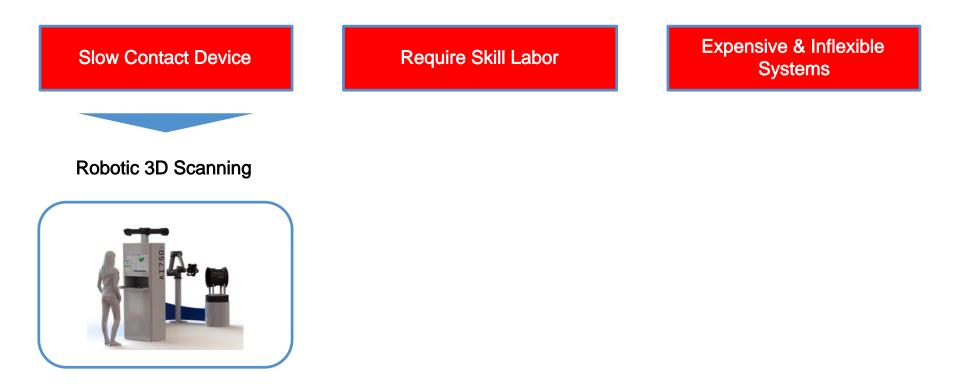


Manual 3D Scanning

Highly trained engineer



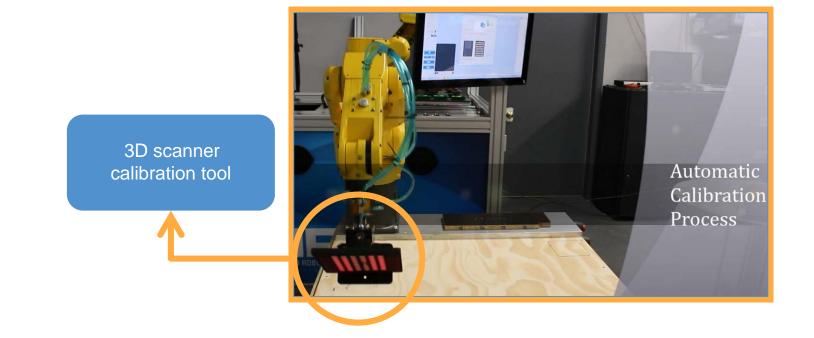
Robotic 3D Scanning


X-Ray / CT Scanning Extremely expensive

Solution: Robotic 3D Scanning

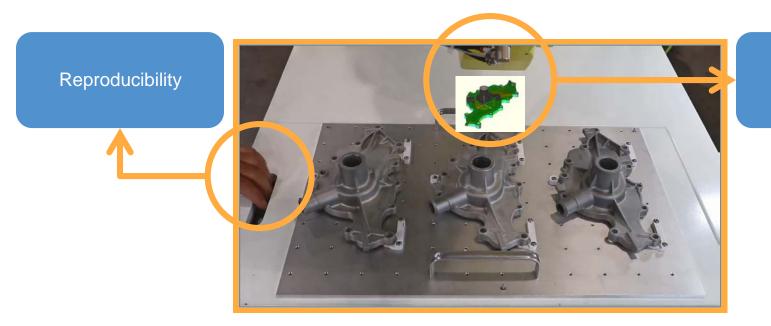
Solution: Easy User Experience & Programming

Solution: Flexible Turnkey Systems

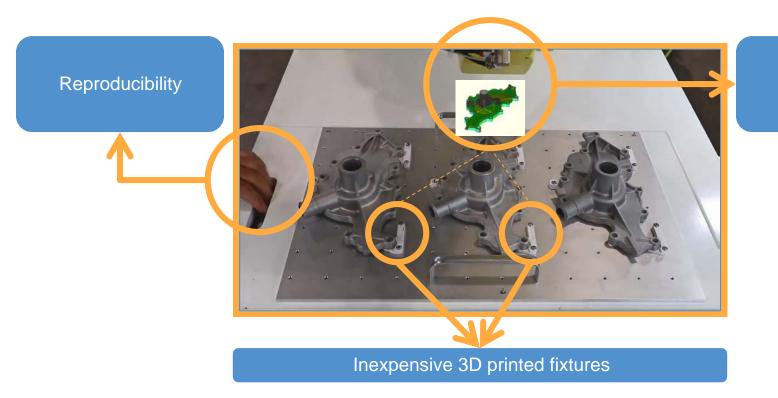


Comparison: Non-Contact (3D Scanning) vs Contact (CMM)

Calibration: 3D Scanner



Calibration: Robot


Precision

Repeatability

Precision

ARIS

Repeatability

Source of Biases

- Fixtures
- Grippers
- 3D canning
- Image processing
- Human consistency

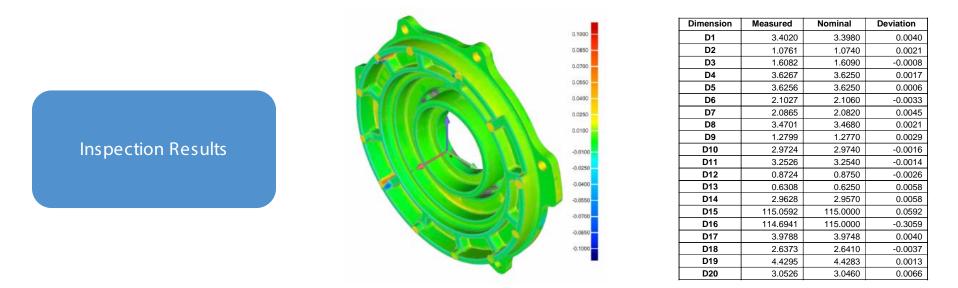
Maximize precision by iterating various 3D scan data image registration

Metric	Part #1	Part #2
Average $\sigma_{R\&R}$	0.64 (thou) / 16.3 (μm)	0.69 (thou) / 17.6 (μm)
$6 \times Average \sigma_{R\&R}$	3.85 (thou) / 97.8 (μm)	4.16 (thou) / 105.6 (μm)
Acceptable Tightest Tolerance	12.8 (thou) / 0.33 (mm)	13.9 (thou) / 0.35 (mm)

Compared to CMMs, the precision is

- Slightly worse than in -lab CMMs
- Comparable or slightly better than portable CMMs

Comparison Study vs CMM Process


Initial Part Setup

75%+ implied time and cost savings

Step	Automated 3D Scanning		Current Process	
	# Operator Hours	# Machine Hours	# Operator Hours	# Machine Hours
(Step 1) Fixture Design	1.0	0.0	1.0	0.0
(Step 1) Fixture Printing	0.5	6.0	0.5	6.0
(Step 2) End-of-arm Tooling	0.0	0.0	N/A	N/A
(Step 3) Creating an Inspection Report Template	2.0	0.0	20.0	0.0
(Step 4) Creating a Tray to Hold Fixtures	0.5	0.0		
(Step 5) Programming Pickup Locations	0.5	0.0		
(Step 6) Programming Scan Locations	0.5	4.0		
Total	5.0	10.0	20.0	6.0

Comparison Study vs CMM Process

Key Results	Automated 3D Scanning	Current Process
Number of Data Points Collected	2,000,000	200
Cycle Time (Min)	8	15
Preparation (Setup & Tear Down) Time (Min)	5	10

ARIS

Comparison: Cobot vs Industrial / Line -Laser vs Structured

Optimal for adapting automation programs to new designs and design modifications

Faster; outperforms on shiny surfaces; can measure large size parts

	Structured Blue Light Scanning	Multi -Line Laser Scanning with External Tracking
Need to spray	0	Х
Time for data acquisition	5-15mins	3.5 mins
Need to use markers	0	Х
Accuracy (for non-shiny surface)	.5-5 thou	1.5 thou
Accuracy (for shiny surface)	Lack of data	3-5 thou
Resolution	.013.05mm	.3-1mm

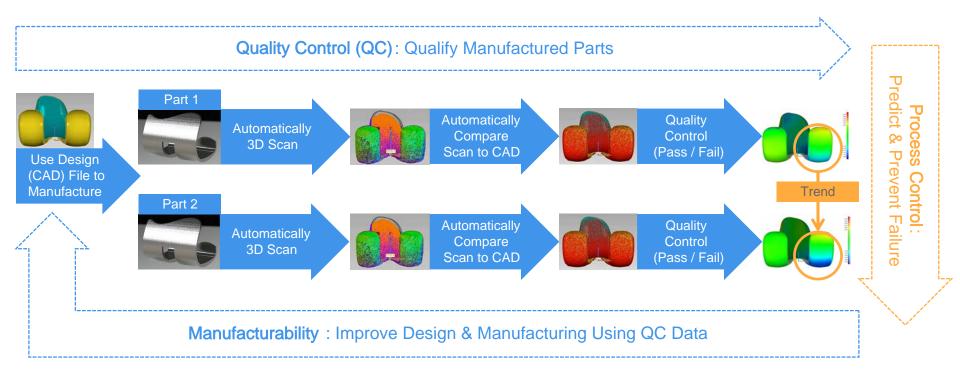
Case Studies

Replace CMM + Scanner Head

54 mins vs 5 mins

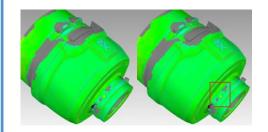
90% + Time Savings

\$1MM+ Annual Savings


Replace 4 CMM Programs 100%

Impact

Impact to Design for Manufacturability



Impact to Supply Chain Quality Control

Machined

Impact to Supply Chain Decision Making

THANK YOU

CONTACT:

Mingu Kang, CEO

- mingu.kang@aristechnology.com
- (847) 894-9180

