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What do we simulate?

• A virtual product is a mathematical representation of product geometry 
created or represented with software (CAD)

• The behavior of a virtual product is specified by partial differential equations 
(PDEs) of physics that connects configuration variables to loads.

𝜕𝜕
𝜕𝜕𝑡𝑡

𝛻𝛻

GEOMETRY BEHAVIOR

𝐴𝐴. 𝑥𝑥 = 𝑏𝑏
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Why do we simulate?

• A geometry is derived from requirements and verified by simulation 
behavior ...

• …because it is cheaper than testing physical prototypes

GEOMETRYREQUIREMENTS

BEHAVIOR

Derive

Verify Adapt

Traceability

Impact analysis
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When do we simulate?

• Ideally, we simulate over the whole product lifecycle 
• We simulate designs to verify requirements, manufacturing 

processes to evaluate impact of manufacturing on design, 
and compare sensor data for life prediction in service 

DESIGN MANUFACTURING SERVICE

6



What and how do we simulate in design?

• What?: Behavior of product geometry
• How?: Three options:

• Create geometry then test behavior
• Iterative behavior testing of geometry (or simulation driven design)
• Generate geometry from behavior 

WATERFALL ITERATION GENERATIVE
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What and how do we simulate in 
manufacturing?
• What?: Change geometry of raw material to match product geometry
• How?: By simulating a chain of manufacturing processes that 

transforms the raw material geometry into the product geometry

Raw material

Cutting pressingTempering GEOMETRYGEOMETRY

EVALUATE IMPACT ON BEHAVIOR

Part
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What and how do we simulate products in 
service?
• What?: Behavior of 3D geometry of a physical asset in real-time
• How?: Input sensor data to simulate behavior for life-time prediction

GEOMETRY

Measurements
PHYSICAL 
ASSET

BEHAVIOR
DIGITAL 
TWIN Simulate
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How do we simulate?

• We use a tessellated (linear) representation of the geometry (a 
mesh); choose a predefined physics model, assign boundary 
conditions, input simulation parameters to the simulation template, 
then simulate.

Select physics 
model

Prepare 
simulation

Run
simulation

GEOMETRY BEHAVIOR
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What is the tool ecosystem to simulate?

• Physics-dependent commercial off the shelf solutions or physics-
independent solutions

SPEC

𝜕𝜕
𝜕𝜕𝑡𝑡

𝛻𝛻𝐹𝐹 = 𝑚𝑚𝑚𝑚

SPEC

Physics Math
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What are the simulation digital assets?

• Product model geometry (mesh)
• behavior specification which consists of simulation specification 

(model + boundary conditions + parameter settings) and simulation 
results

GEOMETRY BEHAVIOR

SPEC RESULTS

13



Benefits of physics-dependent software

• Declarative procedure that selects pre-defined behavior models
• Convenient usage with simulation input templates 
• Good integration with product model geometry
• Post-processing support “on click”

Pre-defined behaviour

Simulation template

Post-processing
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Benefits of physics-independent software

• Flexibility (user-defined behavior)
• Transparency (computational model)
• Reusability of behavior models for multiple physical domains

Computational model

Multiple-domain reuse
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User-defined behaviour
SPEC

𝛻𝛻

Math



Problems of physics-dependent software

• Pre-defined behavior is documented with more or less details (consistency 
and transparency problem)

• Proprietary reference codes are used to identify pre-defined behavior
• Simulation capabilities limited to pre-defined behaviors available in software 

library
• Difficult to find the correct behavior due to vast number of behavior variants
• Difficult to compare behaviors between different software

16

Requires more transparency and flexibility



Any standard for physics-dependent 
software?

• AP 209: Standard for multidisciplinary analysis and design
• Currently only support structural mechanical engineering and fluid dynamics 

concepts
• Integrates pre-defined behavior models using proprietary reference code 
• Who is in charge of behavior model reconciliation?
• Difficult because COTS are parametrized pre-defined models with varying 

documentation, rather than computational models

17

Vendor lock-in



Problems of physics-independent software

• Difficult to use for engineers (e.g. PDEs or PDEs weak forms)
• Not simple to connect math to physics information
• Limited integration with product model geometry
• Requires writing of custom code to post-process results (e.g. 

secondary variable such as stress)
• No standard for computational model
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Requires better usability

What should be the behavior input?



Summary and benefits of tools/ approaches
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BENEFITS:
Usability (Pre-defined behavior, 
input using simulation templates
post-processing)

LIMITATIONS:
Flexibility, transparency 
(documentation, behavior 
equivalence, vendor lock-in)

BENEFITS:
Flexibility (User-defined behavior) 
transparency (numerical choicesl)

Physics-dependent tools
(declarative input)

Physics-independent tools
(computational input)

LIMITATIONS:
Usability (behavior input is 
complex) association to physics 
(abstract behavior)
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What can we learn from time-only simulation?

• Successful time-only simulation tools and standards are available (e.g. 
Mathworks Simulink/Simscape, Modelica) that process real numbers.

Signal network
(power decoupled)

Kirchhoff network 
(power coupled)

[Real] [Real]

[Real]

[Real]

[Real]

[Real]
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What do they have in common?
• They support graphical and textual models for networks of 

mathematical equations

s

𝒖𝒖 = 𝑳𝑳 ×
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

×

𝑳𝑳

Laplace transform
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What is the benefit of using mathematical 
equation as input?
• This translates into simulation credibility, reproducibility and even 

replicability as well as interoperability (e.g. FMI)

Credibility Reproducibility 
and replicability

Interoperability
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What about using PDEs for model description?

• PDEs can be classified (e.g. 2nd order PDEs in elliptic, parabolic, 
hyperbolic)

• PDEs can be associated to physics problems (e.g. heat 
conduction is a parabolic PDE)
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What are the problems with PDE descriptions?
• Boundary conditions refer to physical variables that are not in the PDE
• Secondary physical variables are not part of the equation (e.g. heat flux 

density for thermal conduction)
• Classifying by PDEs makes sense from the solver side but not from the 

physics side (actually thermal conduction can be hyperbolic, elliptic or 
parabolic)

• How would we associate systems of PDEs?

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑦𝑦2 + 𝑞𝑞 = 0
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How do we derive PDEs?

• Find and select physical laws
• Define model assumptions and perform variable substitution to 

derive equations (e.g. connecting configuration variable with loads)

BOOK

Physics

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑦𝑦2 + 𝑞𝑞 = 0 SOLVER
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Connectivity is efficient knowledge

Central 
line

Northern 
line

In a world of time-table

Cross-referencing

In a world of maps In a world of computers
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What about physics?

ElectricalMechanical

In a world of physics books

Cross-referencing

?

SOLVER

INPUT 
TEMPLATE

In a world of 
computer simulations
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Pillar for machine-readable physics:
computation instead of equations

𝑄𝑄𝑄 𝒐𝒐𝒐𝒐 𝑄𝑄𝑄

• Our proposition is to store physical laws as computations (physics 
graphs) instead of equations

Physical variable

Operator

Q2 = op(Q1)

Equation Computation (Physics graphs)
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What about connectivity?
• With computations, physical laws can be connected together and 

relations between them interpreted explicitly (e.g. RDF)

𝑑𝑑
𝑑𝑑𝑡𝑡

𝑣𝑣(𝑡𝑡) 𝑝𝑝(𝑡𝑡)𝑥𝑥(𝑡𝑡) ×

𝑚𝑚

position velocity

mass

momentum

𝑑𝑑
𝑑𝑑𝑡𝑡

𝑣𝑣(𝑡𝑡)𝑥𝑥(𝑡𝑡)

position velocity

𝑣𝑣(𝑡𝑡) 𝑝𝑝(𝑡𝑡)×

𝑚𝑚
velocity

mass

momentum

Connecting

URI-1 URI-2

URI-2 URI-3

URI-4 URI: unique resource identifier

URI-1 URI-2 URI-3

URI-4
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What are we computing?
• We are computing math objects, rather than numbers.
• A math object is defined by three different levels of abstraction.
• Starting from the most abstract, we have function type then 

mathematical expression and then data or function plot.

Type expression data

𝑈𝑈(𝑥𝑥)
Symbol: U
Input: {x}
Output: Real

𝑆𝑆𝑝𝑝𝑚𝑚𝑆𝑆𝑆𝑆
Dimension: 𝑄
Input: {x}
x: Real

exp

5 ×

𝑥𝑥 𝑥𝑥

𝑆𝑆5𝑥𝑥2

×
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More complex math objects for physics

34

• Math objects  are tensor fields in physics



Equations and computations compared

• With equations, many possible rearrangements are possible and implicit
• With computations, the relation is directed and explicit (e.g. metro map)

Equation Computation

× 𝑈𝑈𝐼𝐼

Electric 
current

Electric 
potential

𝑈𝑈 = 𝑅𝑅𝐼𝐼
𝐼𝐼 =

𝑈𝑈
𝑅𝑅

𝑅𝑅 =
𝑈𝑈
𝐼𝐼

𝑅𝑅Ohm’s Law
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What about inverses for computation?

• Linear physical laws have inverse relations (algebraic relations)

× 𝑈𝑈𝐼𝐼

Electric 
current

Electric 
potential

𝑅𝑅Resistance

× 𝑈𝑈𝐼𝐼

Electric 
current

Electric 
potential

𝐺𝐺ConductanceInverse relation
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What about inverses for computation?

• Physical laws involving derivatives with a single independent variable 
have no inverse relation but an inverse path

• Integration introduces a new physical variable and a boundary 
condition

𝑑𝑑
𝑑𝑑𝑡𝑡

𝑣𝑣(𝑡𝑡)𝑥𝑥(𝑡𝑡)

position velocity

Inverse path

+ 𝑑𝑑(𝑡𝑡)𝑥𝑥(𝑡𝑡)

position displacement

𝑥𝑥0(𝑡𝑡) Initial position

� 𝑑𝑑𝑡𝑡 𝑣𝑣(𝑡𝑡)

velocity

Derivation Integration
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What about inverses for computation?
• Some physical laws have no inverse relation or path:

• Non-linear compositions or differential derivatives
• Higher order derivatives, introduce boundary conditions required for 

solvers.

𝐶𝐶 𝑈𝑈𝐼𝐼

Electric 
current

Electric 
potential

ℑ

Characteristic

Nonlinear law

. 𝛻𝛻 𝜎𝜎𝑠𝑠ℎ

Heat flux 
density

Heat 
source

Differential law

�
𝝏𝝏𝛀𝛀

𝒅𝒅𝛀𝛀 𝐻𝐻 Heat rateNo inverse path

No inverse relation
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How do we define physics problems?
• They are defined by known(s) and unknown(s) pairs of physical variables.
• Paths through physics graphs between known and unknown variables can 

be extracted into physics problem graphs

×

𝑪𝑪

Physics Graph (PG)

+

× 𝑪𝑪

×

×

𝑪𝑪

Physics Problem Graphs (PPG)

+

× 𝑪𝑪

×

IN
OUT?

40



How do we compute outputs from inputs?

• Generate functional programs by collecting the operations along a 
path through a physics graph, providing the mathematical expressions 
for calculating outputs from inputs

41

PHYSICS 
PROBLEM
GRAPH

INPUT

OUTPUT

INSTRUCTIONS

Functional program



Which kind of functional programs do we have?

• When the input is known, we have an evaluation program
• When the input is unknown, we have a solver program. 

42

KNOWN

UNKNOWN

INSTRUCTIONS

Evaluation program

UNKNOWN

KNOWN

INSTRUCTIONS

Solver program



Examples of physics evaluation problems
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Example 1:
Known is position
Unknown is force

Example 2:
Known is force
Unknown is position

Known Unknown

KnownUnknown

Evaluation Program

Evaluation Program



Example of physics solver graph 

Example 3:
Unknown is temperature
Known is heat source

44

Solver Program



Numerical graphs augment physical graphs for 
finite elements

Physics problem definition

Function type declaration

Finite element declaration
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Associate physics solver graphs to solvers via 
functional programs
• Solver programs define PDEs that can be input to solvers. 

46

UNKNOWN

KNOWN

INSTRUCTIONS

Solver program

SOLVERPDEs



Generating solver input from numerical graphs

Solver input template
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Numerical graph
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What problems does machine-readable 
physics solve?

50

• It reduces the limitations of physics-dependent and physics-independent 
software by combining the benefits of both.

BENEFITS:
Usability (simulation template generation, post-processing), flexibility 
(user-defined behavior), transparency (computational model, 
documentation generation)

LIMITATIONS:
limited integration with product model geometry

New approach (computational model of physics)



Who is going to use it?
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• Numerical code developers
• Use numerical graphs (NGs) as software specifications to create new solvers

• Vendors or open source communities use
• Use NGs to associate domain independent models to their existing solvers

• FEA engineers use
• Use NGs to design pre-defined behaviors

• Standardization bodies use
• Use NGs to define libraries

• Design engineers
• Use simulation templates generated from NGs as input, and physics solver 

graphs (PSG) as model documentation
• System engineers

• Connect requirements to physical variables in PSGs (e.g. maximum stress)
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Summary
• Capture physical laws as computations (physics graphs)

• Function specification of physical variables
• Can be stored in a database

• Define physics problems by
• Defining pairs of known/unknown physical variables
• Extracting physics problems as subgraphs

• Generate functional programs from physics problems (evaluation & solver)
• Transparent definition of numerical choices (e.g., finite elements)
• Provides all information needed to implement solvers
• Enables multiple solvers to be used for same functional program
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