# **Apex AEER – Evaluating Biometric Exit Concepts of Operations**

**Jacob Hasselgren** 

May 5, 2016

## **CONOPS Configurations**









### **Target Performance Goals**

- Should biometrically verify 97% of in-scope travelers
- Should "do no harm" to existing operations
  - Ex: To board a 300 passenger aircraft in under 40 minutes, each transaction must take 8 seconds or less
- Minimize staffing requirements



# Success Criteria – Biometric Match Accuracy (Effectiveness)

- Percentage of individuals properly verified at an exit station
- Real time 1:1 (with token)
  - Match results presented to subject before end of transaction
  - Same day matching
- N:N post-processing
  - Bulk matching run after the completion of a sequence
  - Allowed for matches that did not occur in real time (i.e. interoperability, different day matching, multiple algorithms...)

# Success Criteria – Transaction Times (Efficiency)



- Time delta between token scan and successful biometric match
- Transaction times used to infer throughput

### **Success Criteria – Public Satisfaction**

- Level of participant acceptance
- Modified System Usability Scale (mSUS)
- Likert Scale
- Calculated a 0-100 score; higher the better

AEER Post Test Interview Questions
AEER Scenario Test Sequence #2

Band Number: \_\_\_\_\_\_.

**Exit Gate** 

Image of Device & Gate

|    |                                                                                          | Strongly<br>Disagree |   |   | : | Strongly<br>Agree |
|----|------------------------------------------------------------------------------------------|----------------------|---|---|---|-------------------|
| 1  | I think that I would like to use this iris device whenever I travel.                     | 1                    | 2 | 3 | 4 | 5                 |
| 2  | I found the iris device unnecessarily complex.                                           |                      | 2 | 3 | 4 | 5                 |
| 3  | I thought the iris device was easy to use.                                               |                      | 2 | 3 | 4 | 5                 |
| 4  | I think that I would need the support of an operator to be able to use this iris device. |                      | 2 | 3 | 4 | 5                 |
| 5  | I found the iris device to be well integrated into the entry process.                    | 1                    | 2 | 3 | 4 | 5                 |
| 6  | I thought there was too much complexity in the entry process with the iris device.       |                      | 2 | 3 | 4 | 5                 |
| 7  | I would imagine that most travelers would learn to use this iris device very quickly.    |                      |   |   |   |                   |
| 8  | I found the iris device very awkward to use.                                             | 1                    | 2 | 3 | 4 | 5                 |
| 9  | I felt very confident interacting with the iris device.                                  | 1                    | 2 | 3 | 4 | 5                 |
| 10 | I needed many attempts before I figured out how to use the iris device.                  | 1                    | 2 | 3 | 4 | 5                 |

### **Data Gathering Techniques**



Beam Breaks





### **Audio/Video Recording**



Environmental Sensors



Surveys

# The Maryland Test Facility



# The Maryland Test Facility







### **Test Participants**

- 1551 volunteers recruited for the Scenario Evaluation
- Blocked on age, gender, race/ ethnicity and eye color
- Demographically matched to traveling public
- Over 50 different countries of origin represented





# **Test Progression**

#### **Sequence 1**

"Initial Characterization of FIS Entry Booths and Self-Service Portals"



#### **Sequence 2**

"Screening Additional Biometric Modalities and Methods at a Self-Service Portal"



#### **Sequence 3**

"Evaluate the Impact of Signage and Process at a Self-Service Portal"



#### **Sequence 4**

"Evaluate FIS Entry Podiums, Evaluate Optimized PLB, Evaluate Impact of Signage and Feedback at a Self-Service Portal"

### Sequence 1

- Defined and characterized entry and exit CONOP configurations
- Human factors; examined learning
  - Controlled experience with each technology
  - Used scenarios multiple times



## Sequence 1 Takeaways

- Both finger methods performed comparably well, warranted investigation into additional finger methods
- Performance could improve if usability optimizations were made to the standoff iris method
- User positioned iris posed usability challenges (Sirotin)
- Minimal learning effect



### Sequence 2

- Introduced two additional finger methods
- Integrated usability optimizations to standoff iris
- Preliminarily examined the passenger loading bridge configuration and an additional passive face method



## Sequence 2 Takeaways

- Able to differentiate performance between finger methods
- Additional usability optimizations for the non-contact finger could yield performance improvements
- Usability optimizations to standoff iris improved performance



## Sequence 3

 Compared different levels of signage/ feedback

 Enhanced instructional cues vs. limited instructional cues



### Sequence 3 Takeaways

 Enhanced instructional cues have a notable, positive effect on system performance



### Sequence 4

- Examined the presence of audio cues as an additional method of feedback
- Examined the presence/absence of text within presented signage and feedback



## Sequence 4 Takeaways

 The presence of audio and text improved system performance



### What We Have Learned

- Some collection methods may be viable for airport operations
  - High biometric verification accuracy and short transaction times due to ample feedback and the accommodation of both naïve and returning volunteers



### What We Have Learned

- Some collection methods may not be viable for airport operations
  - Poor biometric verification accuracy due to high failure to acquire rates for naïve subjects
  - The scenarios that did not meet the targeted performance levels were mainly due to usability issues



- Instruction cues and process play an important role in biometric collection
  - Must convey clear understanding of needed action

### Outcome

Select combinations of CONOP configuration, biometric modality/ method and traveler process can meet a 97% biometric true accept rate and produce average boarding transaction times to support boarding 300 passengers in 40 minutes, for in-scope departing travelers.

### Thank you.

The research for this presentation was fully funded by the Department of Homeland Security Science and Technology Directorate on contract number W911NF-13-D-0006-0003.