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Self-aware manufacturing and metrology

Self-aware operation
 ability of a production or measuring machine to understand its current state and surroundings and respond

Approach
 combine data-driven and physics-based models to provide hybrid physics-guided data learning approaches

Goal
 improve the accuracy, physical consistency, traceability, and generalizability of model predictions to improve 

manufacturing productivity

Project domain
 artificial intelligence
 machining process modeling
 measurement science
 design and ultraprecision machining of freeform optics
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Self-aware manufacturing and metrology

Why now?
 new computing technologies and data are transforming manufacturing from empiricism to science, analog to digital
 global competitors are responding through national efforts (e.g., Germany’s Industry 4.0 and China’s Made in China 

2025)
 US industry, especially SMEs, are struggling to adopt new technology (artificial intelligence, smart manufacturing, 

Industry 4.0, Industrial Internet of Things, cloud computing, digital thread, digital twin, …)

Digital thread
 communication framework that enables seamless data flow and an integrated view of manufacturing processes
 links every phase of life cycle from design, production, and testing through end use

 digital solid model produced using CAD software
 CNC machining instructions produced using CAM software
 measurements performed to ensure conformance to design specifications
 all data partnered with physical part as digital twin

Challenges
 human intervention is still required at nearly all stages

 high volumes of data must be manually interpreted and implemented 
 CAM part program is manually produced for every part by a specially trained, high wage programmer
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Physics-guided data learning

Modeling complex industrial processes 
 data-driven
 physics-based

Data-driven approaches
 machine learning and statistical techniques
 learn directly from sensor data and measurement results 
 advantage when relationships between the input and output variables 

are difficult to describe using physics
 challenge is that they are agnostic to physical laws

 dependent on data quality
 may not generalize beyond the training data set

Physics-based models
 preferred for scientific discovery
 challenges include

 every model is an approximation of reality
 model input parameters require identification, estimation, and calibration
 input uncertainty is propagated to output uncertainty
 model may be more complex and computationally intensive than practical
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Physics-guided data learning

Hybrid physics-guided data learning
 combine data-driven and physics-based models with process measurements
 penalize results that are inconsistent with physical knowledge

 assure physical consistency of model predictions
 improve capability to generalize to other situations
 enable model output to be incorporated in new scientific discovery efforts

Physics-based 
model, y = f(x)

Input, x, 
related to 

output

Simulated 
output, ys

Physics-guided data learning 
model, Y = f(x, ys, ym)

Output, Y

Measured data, ym, 
for input, x
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Machining background

Machining
 use defined cutting edge to shear away 

material (chips) and leave desired geometry

Considerations
 path planning
 fixturing
 tooling (selection, balancing, holder type)
 coolant management
 machine accuracy

 quasi-static positioning
 dynamic positioning
 thermal errors

 tool/workpiece vibrations
 chatter

Chatter
 self-excited vibration
 large forces
 large displacements
 poor surface
 tool/workpiece damage
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Machining background

Tool flexibility
 cutting tools are designed to be stiff
 the materials are selected to be hard and resist deformation.
 when the cutting force is applied to the tool it still deflects
 can think of a tool as a stiff spring

Workpiece flexibility
 sometimes the workpiece is also flexible
 workpiece can deflect as much or more than the tool when the cutting force is 

applied
 can also be thought of as a spring
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Cutting force
 generated as the tool shears away material in the form of a chip

 cutting force depends on the chip thickness, chip width (into screen), material properties, and tool geometry
 larger chip width/thickness and negative rake angle gives higher force

Chip thickness

Positive rake angle shown

Machining background



13

Machining background

Why does vibration occur in milling?
 teeth constantly enter and exit the cut
 the cutting force varies with these entries and exits
 the variable cutting force acts on the flexible tool and/or workpiece and causes displacement
 this variable displacement is vibration
 the amplitude of vibration depends on the tool/workpiece stiffness and spindle rotating frequency
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There are two main types of vibration in milling.

1) Forced vibration
The variable force causes the tool or workpiece to vibrate at the same frequency. For a 
spindle speed of 12000 rpm and a cutter with two teeth, the tooth passing frequency is 
12000/60*2 = 400 Hz.

 vibration magnitude depends on the relationship between the tooth passing frequency 
and the tool/workpiece dynamics

 describe the dynamics using the frequency response function, or FRF
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Machining background
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2) Self-excited vibration
 Steady input force is modulated into vibration near the system natural frequency

Examples include:
 whistle - steady air flow produces acoustic 

vibration
 violin - bow across string produces vibration at 

frequency that depends on the string length
 airplane wing flutter
 chatter in machining - steady excitation of teeth 

impacting work leads to large tool vibrations 
near system natural frequency

t (sec)

x(
t)

Tacoma Narrows Bridge (Galloping Gertie) 
opened in July 1940, but collapsed due to 
aero-elastic flutter four months later.

Machining background
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Machining background

Regeneration is a primary mechanism for chatter

 force depends on chip thickness

 chip thickness depends on current vibration and previous pass

 current vibration depends on force

feedback

Why does chatter (self-excited vibration) occur in machining?

Chip thickness is nearly constant 
– small force variation  stable

Chip thickness varies so 
force varies  unstable
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Machining background
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Stability lobe diagram
 separates unstable (chatter) from stable (forced vibration) zones
 select spindle speed and axial depth combination to obtain stable cutting conditions without trial cuts
 best spindle speeds depend on dynamics and probably do not correspond to handbook values
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Machining background
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revolution for left 
stable point

What about the chip 
thickness variation?
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Machining background
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 Machining stability can be modeled analytically and numerically
 Physics-based model inputs include

 structural dynamics (frequency response function)
 force model (mechanistic coefficients)
 tool/cut geometry (number of teeth, diameter, radial depth of cut)

 IIoT enables new data to be generated at high volume/rate with low cost
 Treat every cut as an experiment

 Challenge
 physics-based models inputs have uncertainty, so optimized machining parameter predictions are also uncertain

 Objective
 combine physics-based models with experiments using data learning model, use new data to update model

Stability modeling
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Stability modeling

 Data-learning models generally require a large amount of high quality data to train the model
 Approach here is to use the analytical turning stability limit to generate training data
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Stability modeling
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 Data-learning models generally require a large amount of high quality data to train the model
 Approach here is to use the analytical turning stability limit to generate training data
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Stability modeling

𝛼𝛼1 = 90° 𝛽𝛽 = 70° 𝑘𝑘1 = 1 × 106 ⁄N m 𝑘𝑘1= 1 × 106 N/m

𝛼𝛼2 = 0° ℎ1 = 0.1 mm 𝑐𝑐1 =  315 N-s/m 𝑐𝑐2 = 315 N-s/m

𝐾𝐾𝑠𝑠 = 700 N/mm2 𝑚𝑚1 = 2.5 kg 𝑚𝑚2 = 2.5 kg

The limiting chip width 𝑏𝑏lim is calculated over a range of spindle speeds for a selected system. 

The graph of spindle speed vs. 𝑏𝑏lim is the stability map.  

 The data for the proposed machine learning models consists of  
two sets: training and test datasets

 Both the sets are generated by randomly selecting the chip 
width values for N spindle speeds

Training data, N = 201

Stable

Chatter
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Stability modeling

 Stable/unstable machining is a classification problem

 Classification is a supervised learning approach in which the model learns from input data and then uses this learning 
to classify new observations
 face image male/female
 spindle speed-chip width  stable/unstable

 Several approaches are available
 Linear Classifiers: Logistic Regression, Naive Bayes Classifier
 Support Vector Machines
 Decision Trees
 Boosted Trees
 Random Forest
 Artificial Neural Networks
 Nearest Neighbor.
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 ANNs consist of neurons arranged in layers: an input layer, an output layer, and one or more hidden layers 
 The neurons are connected to each other through synapses
 Each neuron takes inputs from the other layers, transforms them (using the weights associated with the synapses) to 

an output through an activation function
 The neurons in the output layer calculate the output variables using the input from the previous (hidden) layer

Artificial Neural Networks (ANNs) were selected 
for this study.

neuron

synapse

Stability modeling
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Training data: 2001 points Two hidden layer, six neuron ANN

The model is able to reproduce all the lobes using the training data. How well does it perform on the test data?

Predicted decision boundary
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Stability modeling

 Two input variables: chip width and spindle speed
 Output layer consists of only one node: a number between 0 and 1 (the likelihood of chatter occurring)
 Output ≥ 0.5 is taken to be chatter
 Output < 0.5 is treated as stable
 Activation function: logistic function
 Error function: cross-entropy function
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Stability modeling

Predicted

Stable Chatter

Ac
tu

al Stable 215 2 217

Chatter 1 283 284

216 285

Confusion matrix

The ANN model with two 
hidden layers is able to 
predict with 99.4% 
accuracy on the test data 
(498/501).

Test data: 501 points
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What if only one hidden layer with four neurons is used? 

N = 201 N = 601

N = 2001N = 2001

The stability lobe diagram is not 
predicted very well by the ANN model 
when only one hidden layer is used.

The bottom two cases correspond to 
the same number of points in the 
training data, but different 
distributions.

One hidden layer, 
four neuron ANN

Stability modeling
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Stability modeling

Training set
 data points generated using analytical stability model
 binary classification: stable or chatter

Experiments completed
 characterize behavior as stable or chatter
 data is in machine learning model domain (known spindle speed, depth of cut, and stability result)
 re-train model using new data

1. Use stability map to generate a data set (derived using uncertain FRF and force model)

Spindle speed

De
pt

h 

Spindle speed

De
pt

h 
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Stability modeling

2. Use ANN to define stability model from data set (input uncertainty influences ANN)

Spindle speed

De
pt

h 

Spindle speed

De
pt

h 

Training set
 data points generated using analytical stability model
 binary classification: stable or chatter

Experiments completed
 characterize behavior as stable or chatter
 data is in machine learning model domain (known spindle speed, depth of cut, and stability result)
 re-train model using new data
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Stability modeling

3. Collect data during experiments to determine stability for selected machining parameters

Spindle speed

D
ep

th
 Example:

 cut is stable for initial model prediction of unstable
 at the selected spindle speed, the cut is therefore stable for all 

depths below the selected depth

Training set
 data points generated using analytical stability model
 binary classification: stable or chatter

Experiments completed
 characterize behavior as stable or chatter
 data is in machine learning model domain (known spindle speed, depth of cut, and stability result)
 re-train model using new data
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Stability modeling

4. Combine experimental data with ANN stability model to update model

Spindle speed

D
ep

th
 

 stable experiment gives new knowledge about performance at selected 
spindle speed

 combine experimental points with data set
 use higher weight for experimental data
 update ANN stability model using all points

 reduce uncertainty and improve model accuracy over time

Training set
 data points generated using analytical stability model
 binary classification: stable or chatter

Experiments completed
 characterize behavior as stable or chatter
 data is in machine learning model domain (known spindle speed, depth of cut, and stability result)
 re-train model using new data
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Expanded stability modeling
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Expanded stability modeling

Predict tool point frequency response function, FRF, using receptance coupling substructure analysis, RCSA

 Determine spindle-machine FRF using standard holder

+

F

X

 Model tool and holder

 Couple tool-holder model to spindle response and predict tool point FRF

+

Archive spindle-machine FRF

+ + + =

Provides alternative to measurement of 
each tool-holder-spindle combination
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Expanded stability modeling
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Expanded stability modeling
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Expanded stability modeling

Expanded modeling steps
1. Predict tool point FRF using receptance coupling substructure analysis (RCSA)
2. Generate stability map using predicted FRF and archived force model
3. Use stability map to generate a data set
4. Define data learning stability model from data set
5. Collect data during experiments to determine actual stability for selected machining parameters
6. Combine experimental data with training data to update data learning stability model

1. 2. 3. 4. 5.

6.
Uncertain
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FRF 
model

Tool-holder model,
spindle measurement

Physics-guided data 
learning model for 
machining stability

Predicted cutting 
parameters

Cutting 
force 

model

Machining 
parameters, 

process signals

Stability 
map

Expanded stability modeling

Hybrid physics-guided data learning
 combine data-driven and physics-based models with process measurements
 train model using points obtained from analytical stability map
 update model with experimental results
 Improve model accuracy
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Summary
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Questions?

Tony Schmitz
UNC Charlotte
tony.schmitz@uncc.edu
(704) 687-5086


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43

