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Resistance Spot Welding (RSW)

= Resistance spot welding (RSW)

= Contacting metal surfaces joined by the heat
obtained from resistance to electric current
(Jeffus, 2002).

Resistance Spot Welding (RSW)

Electrode

= Contacting point of two metal pieces Weld
create weld pool, which is called the AC Power Supply
spot or nugget.

Electrode
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RSW Impacts

Design parameters of the work pieces along with RSW
process parameters = influences over the shape of the nugget
width.

Process parameters (e.g., electric current, welding time,
welding force, etc.) = cause the variation of nugget width.

Original equipment manufacturers (OEM) carries out
numerous tests to design a new weldment (assembly design)
—> these tests are costly and time consuming.

Various efforts are made to simulate and predict the nugget
width.
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Concept of Data-driven Design
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Model Based Engineering and Assembly Design

= MBE to utilize the data model (e.g. CAD data) and to enhance the machine
interpretability
= Reduce the human intervention and enhance the accuracies.

* |n manufacturing, CAD used for human understanding only.
= Not only do humans to understand the model, but software applications have to

“understand” the model as well.

= Machine needs to understand the product’s assembly/mating/joining
information properly to enhance the machine readability, to reduce the
human effort, and to enhance the efficiency.
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Design and Visualization

Effective visualization - a powerful way to convey a concept,
design intent, or idea in a globally distributed environment

3D visualization - a way to represent the concepts in a more
understandable manner.
= X3DOM - 3D visualization in a globally distributed environment.

Effective visualization for RSW weldability analysis with the
welded assembly design is very limited.

Focuses incorporating the 3D design data with the welding
process data to represent the process data in a more intuitive
way.
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Formal Assembly Design Model

= Mereotopology to express the product’s part to part assembly relationships.

= Discrete mereotopology (DM) (Randell et al. 2013) utilized to formally
represent the product’s assembly relationships and static and dynamic
behaviors.

DC := Disconnected

EC := Externally Connected
PO := Partially Overlapped

EQ := Equal

TPP := Tangential proper part
NTPP := Non-tangential proper
part

TPPi .= Tangential proper part
inverse

NTPPi := Non-tangential proper
part inverse
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Objectives I

= Model-based visualization framework to integrate RSW
weldability knowledge with assembly models

= Knowledge-based semantic weldability prediction method
has been developed to effectively predict the weldability of
RSW processes, while reducing the data inconsistency
effects.
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Model-Based Visualization and Integration
Framework

_______________________________________________________________________________________________________________________________________________________
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Part 1: Integration of Design Database with STM
Ontology

= Design database - the parametric and assembly information
= CAD systems and design database.

= STM (SpatioTemporal Mereotopology) ontology
= Relevant spatial and temporal design and assembly knowledge.

. System 1 i,
! gg
;

Design Database STM ontology §i

]
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STM Ontology - Concept Map
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STM Ontology
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Part 2: Rule Extraction and SWRL Generation I

= Classification and Regression Tree (CART) algorithm
= To extract the decision rules and converted them into SWRL rules
= System predicting the response parameter (i.e., nugget width)

based on the given design and process parameters
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Parameters in RSW Quality Dataset

Feature types

Geometric
Parameters

Length (mm)
Thickness (mm)
Height (mm)

Radius (mm)

Design
Parameters

Material Thickness (mm)
Coating-EG
(Electrogalvanized)
Coating-HDG

Coating weight (gm/m2)

Surface class

Process
Parameters

Weld force (lbs)

Minimum button

Response
Parameters

Nugget width (mm)

Diameter of stack-up (mm)

Weld current (kA)
Weld time (ms)

Weld time cycle
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Regression Model for Analyzing Welding Dataset I

Y, =1(X,) = [r(X, 4, D)]
Y, = Final predicted value.

r = Average regression function.

X; = Observation from test set.

/= Random parameter of partition.

D = Total data.
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Building Ontology

Shared Ontology

E 3 Shared Ontology

Inherit ~ \ Inherit

Inherit / . Inherit

Ontology A @ @ Ontology B

Application A Application B

] ]

Application A Application B

[ Top — Down Approach ] [ Bottom — Up Approach ]
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RSW Ontology Concept Map

| Thickness ™=

Material

Coating weight

| Surface class |

| Coating-EG (Electro galvanized)

Minimum button diameter of stack-up

Weld Time Cycle

| Squeeze Time
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Decision Tree Example

e o ?) S e
Thickness .2 < 1.6 Nugget 1 Meets Min Width : N
@ —
— -._______- .:]
Current < 6.4 \ Material. 2: C 4.944 Current < 8,95 ‘
® 8 @ T
3.500 | 0.000 Current < 8.45 Current < 6.1

Weld Time Cycles < 19.5 —l

Current < 7,95 Current < 13.205

7.091 \ 7.951 9.150 ‘

If Weld Time Cycles is greater than 19.5 (unit) (consider right side of the branch)
AND Nugget 1 Meets Min Width is true

AND Current is greater than 8.95 (unit)

AND Current is less than 13.205 (unit)

THEN Nugget Width will be 7.951 (unit)

b.222 3.100 3.943 0.625 6.047
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SWRL Rule Conversion

m Test cases

If Weld Time Cycles is greater than19.5 (unit) (consider right side of the

Decision  branch) AND Nugget 1 Meets Min Width is true AND Current is greater
rule than 8.95 (unit) AND Current is less than 13.205 (unit) THEN Nugget Width
will be 7.951 (unit)
weld_time_cycles(?x, ?y) A swrlb:greaterThanOrEqual(?y, 19.5) A
Nugget 1 meets_min_width(?x, true) » weld_current(?x, ?z) »

SWRL rule
swrlb:lessThan(?z, 13.205) ~ swrlb:greaterThanOrEqual(?z, 8.95) ->
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Part 3: Mapping, Integration, and Visualization

X3DOM visualizes 3D contents along with their relevant information
Schema mapping enables the seamless data transfer among the systems.

System 3 (STM ontology : geometric and assembly knowledge) and 4 (RSW
ontology : welding process and response knowledge) mapped with system 5
(X3DOM).

MATLAB is utilized to parse the ontologies (STM and RSW) to extract the
mapped information for the X3DOM.

X3DOM can visualize the welding

___________________________________________________________________________________________
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RSW Assembly Design Viewer

= Visualize the welded and non welded assembly.

= Capable of showing the stages of joining and the interrelationships between
the mated or unmated parts

= Two basic parts.
= Visualization interface.

= X3DOM works as a html based visualization interface; traditional
browser is utilized for the visualization.

= MATLARB is utilized to convey the necessary information from the
ontologies to the X3DOM.

= Protégé to develop the ontologies.
= Display information of the visualized 3D object.
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Demonstration - Case 1

RSW welded assembly viewer RSW welded assembly viewer

Predicted nugget width (mm): Predicted nugget width (mm): 3.94

Last selected object:

Last selected object:

Cylinder 3 Cylinder 3

Process parametres: Process parametres:

Weld current (kcA):
Welding force (lbs):
Weld time (ms):
Weld time cycle:

Weld current (kA): 5.30
Welding force (Ibs): 900.00
Weld time (ms): 16.30
Weld time cycle: 17.70

Design parametres: Design parametres:

Crylinder 1 radins (mm): 2.00
Crylinder 2 radius (mm): 5.00
Crylinder 3 radius (mm): 8.00
Crylinder 1 height (mm): 8.00
Crylinder 2 height (mm): 0.50
Cylinder 3 height (mm): 0.50

Cylinder 1 radivs (mmy): 2.00
Cylinder 2 radins (mm): 5.00
Cylinder 3 radins (mm): 8.00
Cylinder 1 height (mm): 8.00
Cylinder 2 height (mm): 0.50
Cylinder 3 height (mm): 0.50

Assembly information Assembly information

Cl1=Cylinder 1 Cl=Cylinder 1
Cl1=Cylinder 2 C1=Cylinder 2
Cl=Cylinder 3 Cl=Cylinder 3
DC= Disconnected PO=Partially overlapped

C2DCCs C2POC;

Before Welding After Welding
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- To understand the joining/welding process properly, it is important to visualize
the models before/after welding.

- Visualizer can show the interrelationships between mated and unmated parts
before/after welding
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Demonstration - Case 2

RSW welded assembly viewer RSW welded assembly viewer

Predicted nugget width (mm): Predicted nugget width (mm): 3.94

Last selected object:

Last selected object:
Flange 2 Flange 1

Process parametres:
Process parametres:

Weld current (kA):

Welding force (Ibs): Weld current (kA): 5.30
Weld time (ms): Welding force (Ibs): 900.00
Weld time cycle: Weld time (ms): 16.30

Weld time cycle: 17.70
Design parametres:

Design parametres:
Thickness flange 1 (mm): 1.70

Flange 1 each side length (mm): 10.00
Flange 1 each side height (mm): 10.00
Thickness flange 2 (mm): 1.70

Flange 2 each side length (mm): 10.00
Flange 2 each side height (mm): 10.00

Thickness flange 1 (mm): 1.70
Flange 1 each side length (mm): 10.00
Flange 1 each side height (mm): 10.00
Thickness flange 2 (mm): 1.70
Flange 2 each side length (mm): 10.00

Assembly information Flange 2 each side height (mm): 10.00
Fi=Flange 1 Assembly information
F2=Flange 2

EC= Externally connected Fl=Flange 1

PO= Partially overlapped F2=Flange 2

DC= Disconnected PO= Partially overlapped

F1ECF; F{POF;

Before Welding After Welding
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AND DESISN INFORMATICS

- Process, response, design and assembly information visualized before/after
welding

- Predicted nugget sizes and displayed. WAYNE STATE UNIVERSITY
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Summary

= Combines the geometric design database with the RSW process
database and using the data predicts and visualizes weld quality

» Data-driven and model-driven visualization for RSW weldability
knowledge

= CAD environment used as a design database and then the design database
integrated with the STM ontology to extract the design and assembly
knowledge

= STM ontology captures the spatial entity of a weldment

= Welded assembly design and process information taken to the RSW ontology
from the welding database

= Decision rules extracted from the welding datasets and converted into
semantic rules for the machine interpretability and easy information transfer

» Design, process, and weldability information visualized for redesign if
needed
= Ongoing works
= Data driven assembly modeler
= Work on more complex geometry
= Temporal entities for dynamic welding process
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