

Model-based Visualization for Resistance Spot Welded Assembly Design

Kyoung-Yun "Joseph" Kim, Ph.D., Md. Tarique Hasan Khan, Fahim Ahmed, and Gary Witus, Ph.D. NSF Center for e-Design Department of Industrial and Systems Engineering Wayne State University Detroit, MI

Resistance Spot Welding (RSW)

- Resistance spot welding (RSW)
 - Contacting metal surfaces joined by the heat obtained from resistance to electric current (Jeffus, 2002).
- Contacting point of two metal pieces create weld pool, which is called the spot or nugget.

RSW Impacts

- Design parameters of the work pieces along with RSW process parameters → influences over the shape of the nugget width.
- Process parameters (e.g., electric current, welding time, welding force, etc.) → cause the variation of nugget width.
- Original equipment manufacturers (OEM) carries out numerous tests to design a new weldment (assembly design)
 → these tests are costly and time consuming.
- Various efforts are made to simulate and predict the nugget width.

Concept of Data-driven Design

WAYNE STATE UNIVERSITY

COMPUTATION AND DESIGN INI

Ζ

Model Based Engineering and Assembly Design

- MBE to utilize the data model (e.g. CAD data) and to enhance the machine interpretability
 - Reduce the human intervention and enhance the accuracies.
- In manufacturing, CAD used for human understanding only.
 - Not only do humans to understand the model, but software applications have to "understand" the model as well.
- Machine needs to understand the product's assembly/mating/joining information properly to enhance the machine readability, to reduce the human effort, and to enhance the efficiency.

WAYNE STATE UNIVERS

Design and Visualization

- Effective visualization a powerful way to convey a concept, design intent, or idea in a globally distributed environment
- 3D visualization a way to represent the concepts in a more understandable manner.
 - X3DOM 3D visualization in a globally distributed environment.
- Effective visualization for RSW weldability analysis with the welded assembly design is very limited.
- Focuses incorporating the 3D design data with the welding process data to represent the process data in a more intuitive way.

Formal Assembly Design Model

- Mereotopology to express the product's part to part assembly relationships.
- Discrete mereotopology (DM) (Randell et al. 2013) utilized to formally represent the product's assembly relationships and static and dynamic behaviors.

 $xPy := \forall z(zOx \to zPy)$

WAYNE STATE UNIVERSI

8

Objectives

- Model-based visualization framework to integrate RSW weldability knowledge with assembly models
- Knowledge-based semantic weldability prediction method has been developed to effectively predict the weldability of RSW processes, while reducing the data inconsistency effects.

Model-Based Visualization and Integration Framework

Part 1: Integration of Design Database with STM Ontology

- Design database the parametric and assembly information
- CAD systems and design database.
- STM (SpatioTemporal Mereotopology) ontology
 - Relevant spatial and temporal design and assembly knowledge.

STM Ontology - Concept Map

Ζ

STM Ontology

Part 2: Rule Extraction and SWRL Generation

- Classification and Regression Tree (CART) algorithm
 - To extract the decision rules and converted them into SWRL rules
- System predicting the response parameter (i.e., nugget width)
 based on the given design and process parameters

Feature types			
Geometric	Design	Process	Response
Parameters	Parameters	Parameters	Parameters
Length (mm)	Material Thickness (mm)	Weld force (lbs)	Nugget width (mm)
Thickness (mm)	Coating-EG	Minimum button	
Height (mm)	(Electrogalvanized)	Diameter of stack-up (mm)	
• • •	Contine UDC	Weld current (kA)	
Radius (mm)	Coating-HDG	Weld time (ms)	
	Coating weight (gm/m2)	Weld time cycle	
	Surface class		

ą

Regression Model for Analyzing Welding Dataset

$$Y_p = \overline{r}(X_t) = [r(X_t, \lambda, D)]$$

 Y_p = Final predicted value.

r = Average regression function.

 X_t = Observation from test set.

 λ = Random parameter of partition.

D =Total data.

COMPUTATIONAL AND DESIGN INFO

Ζ

RSW Ontology Concept Map

Decision Tree Example

If Weld Time Cycles is greater than 19.5 (unit) (consider right side of the branch) AND Nugget 1 Meets Min Width is true AND Current is greater than 8.95 (unit) AND Current is less than 13.205 (unit) THEN Nugget Width will be 7.951 (unit)

SWRL Rule Conversion

Rule	Test cases		
	If Weld Time Cycles is greater than 19.5 (unit) (consider right side of the		
Decision	branch) AND Nugget 1 Meets Min Width is true AND Current is greater		
rule	than 8.95 (unit) AND Current is less than 13.205 (unit) THEN Nugget Width		
	will be 7.951 (unit)		
SWRL rule	weld_time_cycles(?x, ?y) ^ swrlb:greaterThanOrEqual(?y, 19.5) ^		
	Nugget_1_meets_min_width(?x, true) ^ weld_current(?x, ?z) ^		
	swrlb:lessThan(?z, 13.205) ^ swrlb:greaterThanOrEqual(?z, 8.95) ->		
	nugget_width(?x, 7.951)		

Part 3: Mapping, Integration, and Visualization

- **X3DOM** visualizes 3D contents along with their relevant information
- Schema mapping enables the seamless data transfer among the systems.
- System 3 (STM ontology : geometric and assembly knowledge) and 4 (RSW ontology : welding process and response knowledge) mapped with system 5 (X3DOM).
- MATLAB is utilized to parse the ontologies (STM and RSW) to extract the mapped information for the X3DOM.
- X3DOM can visualize the welding process, response and geometric information.

RSW Assembly Design Viewer

- Visualize the welded and non welded assembly.
- Capable of showing the stages of joining and the interrelationships between the mated or unmated parts
- Two basic parts.
 - Visualization interface.
 - X3DOM works as a html based visualization interface; traditional browser is utilized for the visualization.
 - MATLAB is utilized to convey the necessary information from the ontologies to the X3DOM.
 - Protégé to develop the ontologies.
 - Display information of the visualized 3D object.

Demonstration - Case 1

Before Welding

After Welding

- To understand the joining/welding process properly, it is important to visualize the models before/after welding.
- Visualizer can show the interrelationships between mated and unmated parts before/after welding WAYNE STATE UNIVERSITY

Demonstration - Case 2

Before Welding

After Welding

- Process, response, design and assembly information visualized before/after welding
- Predicted nugget sizes and displayed.

WAYNE STATE UNIVERSITY

COMPUTATIONAL INTELLIG AND DESIGN INFORMATICS

Summary

- Combines the geometric design database with the RSW process database and using the data predicts and visualizes weld quality
- Data-driven and model-driven visualization for RSW weldability knowledge
- CAD environment used as a design database and then the design database integrated with the STM ontology to extract the design and assembly knowledge
- STM ontology captures the spatial entity of a weldment
- Welded assembly design and process information taken to the RSW ontology from the welding database
- Decision rules extracted from the welding datasets and converted into semantic rules for the machine interpretability and easy information transfer
- Design, process, and weldability information visualized for redesign if needed
- Ongoing works
 - Data driven assembly modeler
 - Work on more complex geometry
 - Temporal entities for dynamic welding process

References

[1] A. Kusiak, "Data mining: manufacturing and service applications," Int. J. Prod. Res., pp. 4175–4191, Sep. 2006.

[2] U. Eşme, "Application of taguchi method for the optimization of resistance spot welding process," Arab J Sci Eng, vol. 34, no. 2B, pp. 519–528, 2009.

[3] S. Aslanlar, "The effect of nucleus size on mechanical properties in electrical resistance spot welding of sheets used in automotive industry," *Mater. Des.*, vol. 27, no. 2, pp. 125–131, 2006.

[4] H. Eisazadeh, M. Hamedi, and A. Halvaee, "New parametric study of nugget size in resistance spot welding process using finite element method," *Mater. Des.*, vol. 31, no. 1, pp. 149–157, Jan. 2010.

[5] A. E. Ouafi, R. Bélanger, and J. F. Méthot, "Artificial neural network-based resistance spot welding quality assessment system," *Rev. Métallurgie – Int. J. Metall.*, vol. 108, no. 6, pp. 343–355, Jan. 2011.

[6] Ó. Martín, M. Pereda, J. I. Santos, and J. M. Galán, "Assessment of resistance spot welding quality based on ultrasonic testing and tree-based techniques," *J. Mater. Process. Technol.*, vol. 214, no. 11, pp. 2478–2487, Nov. 2014.

[7] J. Park, K.-Y. Kim, and R. Sohmshetty, "A Prediction Modeling Framework: Toward Integration of Noisy Manufacturing Data and Product Design," p. V02AT03A005, Aug. 2015. [8] J. Park and K.-Y. Kim, "Prediction modeling framework with bootstrap aggregating for noisy resistance spot welding data," *ASME J. Manuf. Sci. Eng.*, 2015.

[9] B. Mak and T. Munakata, "Rule extraction from expert heuristics: A comparative study of rough sets with neural networks and ID3," *Eur. J. Oper. Res.*, vol. 136, no. 1, pp. 212–229, Jan. 2002.

[10] H. Núñez, C. Angulo, and A. Català, "Rule extraction from support vector machines," in ESANN/2002, Bruges (Belgium), 2002, pp. 107–112.

[11] R. Gong, S. H. Huang, and T. Chen, "Robust and Efficient Rule Extraction Through Data Summarization and Its Application in Welding Fault Diagnosis," *IEEE Trans. Ind. Inform.*, vol. 4, no. 3, pp. 198–206, Aug. 2008.

[12] N. Navab, "Developing Killer Apps for Industrial Augmented Reality," IEEE Comput Graph Appl, vol. 24, no. 3, pp. 16–20, May 2004.

[13] K.-Y. Kim, D. G. Manley, and H. Yang, "Ontology-based assembly design and information sharing for collaborative product development," *Comput.-Aided Des.*, vol. 38, no. 12, pp. 1233–1250, Dec. 2006.

[14] M. T. H. Khan, F. Ahmed, and K. Y. Kim, "Weldability Knowledge Visualization of Resistance Spot Welded Assembly Design," in FAIM2017, Modena, Italy, 2017.

[15] S. Lemaignan, A. Siadat, J. Y. Dantan, and A. Semenenko, "MASON: A Proposal For An Ontology Of Manufacturing Domain," in *IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS'06)*, 2006, pp. 195–200.

[16] X. Chang, R. Rai, and J. Terpenny, "Development and Utilization of Ontologies in Design for Manufacturing," J. Mech. Des., vol. 132, no. 2, pp. 021009-021009-12, Feb. 2010.

[17] Q. Zhang, M. Mahfouf, G. Panoutsos, K. Beamish, and I. Norris, "Knowledge discovery for friction stir welding via data driven approaches," Sci. Technol. Weld. Join., vol. 17, no. 8, pp. 672–680, Nov. 2012.

[18] M. T. H. Khan, F. Demoly, and K. Y. Kim, "Dynamic Design Intents Capture with Formal Ontology and Perdurants Object Concept for Collaborative Product Design," in CTS 2016, Orlando, FL, 2016.

[19] M. T. H. Khan and K. Y. Kim, "Spatiotemporal Discrete Mereotopology to Support Assembled Additive Manufacturing," in *SDPS 2015*, Dallas Fort Worth, TX, 2015.

[20] D. A. Randell, G. Landini, and A. Galton, "Discrete mereotopology for spatial reasoning in automated histological image analysis," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 35, no. 3, pp. 568–581, 2013.

[21] F. Ahmed and K. Y. Kim, "Data-driven Weld Nugget Width Prediction with Decision Tree Algorithm," in *Procedia Manufacturing*, University of Southern California Los Angeles, 2017.

[22] F. Ahmed and S. Han, "Interoperability of product and manufacturing information using ontology," Concurr. Eng., vol. 23, no. 3, pp. 265–278, Sep. 2015.

[23] American welding society, "A3.0-01: Standard welding terms and definitions." 2001.

[24] W. G. Rippey, "A Welding Data Dictionary," NIST, 31-Mar-2004. [Online]. Available: https://www.nist.gov/node/702096. [Accessed: 07-Feb-2017]

Acknowledgements

• NSF I/UCRC Center for e-Design.

Thank you

