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Resistance Spot Welding (RSW)

 Resistance spot welding (RSW) 
 Contacting metal surfaces joined by the heat 

obtained from resistance to electric current 
(Jeffus, 2002).

 Contacting point of two metal pieces 
create weld pool, which is called the 
spot or nugget.

Source: 
http://www.substech.com/dokuwiki/
doku.php?id=resistance_welding_rw
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RSW Impacts

Design parameters of the work pieces along with RSW 
process parameters  influences over the shape of the nugget 
width.
Process parameters (e.g., electric current, welding time, 
welding force, etc.)  cause the variation of nugget width.
Original equipment manufacturers (OEM) carries out 
numerous tests to design a new weldment (assembly design) 
 these tests are costly and time consuming.
Various efforts are made to simulate and predict the nugget 
width.
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Concept of Data-driven Design
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Model Based Engineering and Assembly Design
 MBE to utilize the data model (e.g. CAD data) and to enhance the machine 

interpretability 
 Reduce the human intervention and enhance the accuracies.

 In manufacturing, CAD used for human understanding only.
 Not only do humans to understand the model, but software applications have to 

“understand” the model as well.

 Machine needs to understand the product’s assembly/mating/joining 
information properly to enhance the machine readability, to reduce the 
human effort, and to enhance the efficiency.
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Design and Visualization 

 Effective visualization - a powerful way to convey a concept, 
design intent, or idea in a globally distributed environment

 3D visualization - a way to represent the concepts in a more 
understandable manner.
 X3DOM - 3D visualization in a globally distributed environment.

 Effective visualization for RSW weldability analysis with the 
welded assembly design is very limited.

 Focuses incorporating the 3D design data with the welding 
process data to represent the process data in a more intuitive 
way. 
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Formal Assembly Design Model

 Mereotopology to express the product’s part to part assembly relationships.
 Discrete mereotopology (DM) (Randell et al. 2013) utilized to formally 

represent the product’s assembly relationships and static and dynamic 
behaviors. 

𝐷𝐷𝐷𝐷 := Disconnected
𝐸𝐸𝐷𝐷 := Externally Connected
𝑃𝑃𝑃𝑃 := Partially Overlapped
𝐸𝐸𝐸𝐸 := Equal
𝑇𝑇𝑃𝑃𝑃𝑃 := Tangential proper part
𝑁𝑁𝑇𝑇𝑃𝑃𝑃𝑃 := Non-tangential proper 
part
𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇 := Tangential proper part 
inverse
𝑁𝑁𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇 := Non-tangential proper 
part inverse

8

𝑥𝑥𝑃𝑃𝑥𝑥 ∶= ∀𝑧𝑧(𝑧𝑧𝑃𝑃𝑥𝑥 → 𝑧𝑧𝑃𝑃𝑥𝑥)



Objectives
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 Model-based visualization framework to integrate RSW 
weldability knowledge with assembly models

 Knowledge-based semantic weldability prediction method 
has been developed to effectively predict the weldability of 
RSW processes, while reducing the data inconsistency 
effects. 
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Model-Based Visualization and Integration 
Framework
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Part 1: Integration of Design Database with STM 
Ontology

Design database  - the parametric and assembly information
CAD systems and design database. 

STM ( SpatioTemporal Mereotopology) ontology 
Relevant spatial and temporal design and assembly knowledge.
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System 1

Design Database STM ontology 



STM Ontology - Concept Map 
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New concept
Kim et al. (2008)
PRONOIA-1 (2011)
PRONOIA-2 (2015)



STM Ontology
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Geometric design and assembly classes 
and sub-classes



Part 2: Rule Extraction and SWRL Generation

 Classification and Regression Tree (CART) algorithm

 To extract the decision rules and converted them into SWRL rules 

 System predicting the response parameter (i.e., nugget width) 

based on the given design and process parameters
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Parameters in RSW Quality Dataset

Feature types
Geometric 
Parameters

Design 
Parameters

Process 
Parameters

Response 
Parameters

Length (mm)

Thickness (mm)

Height (mm)

Radius (mm)

Material Thickness (mm)

Coating-EG 

(Electrogalvanized)

Coating-HDG

Coating weight (gm/m2)

Surface class

Weld force (lbs)

Minimum button 

Diameter of stack-up (mm)

Weld current (kA)

Weld time (ms)

Weld time cycle

Nugget width (mm)
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Regression Model for Analyzing Welding Dataset 

𝒀𝒀𝒑𝒑 = �𝒓𝒓(𝑿𝑿𝒕𝒕) = [𝒓𝒓(𝑿𝑿𝒕𝒕,𝝀𝝀,𝑫𝑫)]

Yp = Final predicted value.

r ̅ = Average regression function.

Xt = Observation from test set.

λ = Random parameter of partition.

D = Total data.
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Building Ontology
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Top – Down Approach Bottom – Up Approach



RSW Ontology Concept Map
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Decision Tree Example 
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If Weld Time Cycles is greater than 19.5 (unit) (consider right side of the branch) 
AND Nugget 1 Meets Min Width is true 
AND Current is greater than 8.95 (unit) 
AND Current is less than 13.205 (unit) 
THEN Nugget Width will be 7.951 (unit)



SWRL Rule Conversion

Rule Test cases

Decision 

rule

If Weld Time Cycles is greater than19.5 (unit) (consider right side of the 

branch) AND Nugget 1 Meets Min Width  is true AND Current is greater 

than 8.95 (unit) AND Current is less than 13.205 (unit) THEN Nugget Width 

will be 7.951 (unit)

SWRL rule

weld_time_cycles(?x, ?y) ^ swrlb:greaterThanOrEqual(?y, 19.5) ^ 

Nugget_1_meets_min_width(?x, true) ^ weld_current(?x, ?z) ^ 

swrlb:lessThan(?z, 13.205) ^ swrlb:greaterThanOrEqual(?z, 8.95) -> 

nugget_width(?x, 7.951)
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Part 3: Mapping, Integration, and Visualization
 X3DOM visualizes 3D contents along with their relevant information
 Schema mapping enables the seamless data transfer among the systems.
 System 3 (STM ontology : geometric and assembly knowledge) and 4 (RSW 

ontology : welding process and response knowledge) mapped with system 5 
(X3DOM).

 MATLAB is utilized to parse the ontologies (STM and RSW) to extract the 
mapped information for the X3DOM.

 X3DOM can visualize the welding 
process, response and geometric 
information.
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RSW Assembly Design Viewer
 Visualize the welded and non welded assembly.
 Capable of showing the stages of joining and the interrelationships between 

the mated or unmated parts
 Two basic parts.
 Visualization interface.
 X3DOM works as a html based visualization interface; traditional 

browser is utilized for the visualization.
MATLAB is utilized to convey the necessary information from the 

ontologies to the X3DOM.
 Protégé to develop the ontologies.
 Display information of the visualized 3D object. 
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Demonstration - Case 1

Before Welding After Welding
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To understand the joining/welding process properly, it is important to visualize -
the models before/after welding.
Visualizer can show the interrelationships between mated and unmated parts -
before/after welding



Demonstration - Case 2
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Before Welding After Welding

- Process, response, design and assembly information visualized before/after 
welding

- Predicted nugget sizes and displayed. 



Summary
Combines  the geometric design database with the RSW process 
database and using the data predicts and visualizes weld quality
Data -driven and model-driven visualization for RSW weldability 
knowledge
CAD environment used as a design database and then the design database 
integrated with the STM ontology to extract the design and assembly 
knowledge
STM ontology captures the spatial entity of a weldment
Welded assembly design and process information taken to the RSW ontology 
from the welding database
Decision rules extracted from the welding datasets and converted into 
semantic rules for the machine interpretability and easy information transfer
Design, process, and weldability information visualized  for redesign if 
needed
Ongoing works

Data driven assembly modeler
Work on more complex geometry
Temporal entities for dynamic welding process
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