

Optical Properties of Pseudomorphic Ge_{1-x-v}Si_xSn_v on Ge

Nalin S. Fernando,¹ Ryan Hickey,² John Hart,² Ramsey Hazbun,² Dainan Zhang,² James Kolodzey², Stefan Zollner¹

¹Department of Physics, New Mexico State University, MSC 3D, P.O. Box 30001, Las Cruces, NM 88003 ² Department of Electrical and Computer Engineering, University of Delaware, Newark DE 19716

Introduction

• Ge is an indirect band gap material.

- Direct band gap \rightarrow efficiency of the recombination process is high.
- Indirect band gap \rightarrow requires an interaction with a phonon or defects. Very inefficient.
- Direct band gap materials are used to make photonic devices such as LEDs, semiconductor lasers.

• The band structure of Ge is a strong function of strain and alloy composition.

Direct-indirect transition of pseudomorphic Ge_{1-x-v}Si_xSn_v

Compositional dependence of the lowest band gap of pseudomorphic $Ge_{1-x-y}Si_{x}Sn_{y}$ on different substrates:

Figure 3. Compositional dependence of the lowest band gap (either direct or indirect) of pseudomorphic $Ge_{1-x-y}Si_xSn_y$ alloys on (a) Ge, (b) GaAs, and (c) a thick Ge buffer grown fully relaxed at 770 K on Si.

Figure 8. (Left) Compositional dependence of the lattice parameter of relaxed Ge_{1-v}Sn_v alloys (solid) and out-of-plane lattice parameter a_{\perp} of pseudomorphic $Ge_{1-v}Sn_v$ on Ge (dashed). (Right) Compositional dependence of the in-plane strain \mathcal{E}_{\parallel} , out-ofplane strain \tilde{E}_{μ} , hydrostatic strain \tilde{E}_{H} , and shear strain \tilde{E}_{S} for pseudomorphic $Ge_{1-v}Sn_{v}$ on Ge. Symbols show the values derived from X-ray diffraction data. Lines represent the calculated values using Vegard's law and elasticity theory.

• Ge becomes a direct band gap material at ~2% tensile strain. [1]

• Relaxed Ge_{1-v}Sn_v alloys become direct at ~6-9% Sn. [2,3,4]

Ge_{1-x-v}Si_xSn_v **Ge substrate**

• $Ge_{1-x-y}Si_{x}Sn_{y} \rightarrow two compositional degrees of freedom allow$ decoupling of the lattice constant and electronic structure.

 Pseudomorphically grown Ge_{1-x-v}Si_xSn_v on Ge has low defect density and no dislocations.

 Band gap engineering of Ge by controlling strain and alloying with Si and Sn has attracted great interest.

Theory and Model

Lattice parameter of relaxed $Ge_{1-x-v}Si_xSn_v$ ternary alloys: $a_{Sn} = 6.489 \text{ Å} > a_{Ge} = 5.657 \text{ Å} > a_{Si} = 5.453 \text{ Å}$

Pseudomorphic Ge_{1-v}Sn_v on Ge

Sample preparation (at University of Delaware)

• Molecular beam epitaxy (MBE) [11] • EPI 620 MBE system with a base pressure of 1.3x10⁻⁸ Pa Growth temperature 150° C -250° C, growth rate 0.6 – 0.7 nm/min

Spectroscopic Ellipsometry (UV-Visible, FTIR)

Figure 11. AFM images of the samples. The RMS roughness was 0.69, 3.77, 0.71, and 1.0 nm for the samples A, B, C and D respectively. Images showed that the periodic roughness, caused by strain induced buckling, depended on the $Ge_{1-v}Sn_v$ thickness and relaxation. [11]

Continuum elasticity and deformation potential theory: [5,6,7]

Band structure of Ge [8]

Strain dependence of the interband transitions [9, 10]

Effects of strain and alloying on Ge dielectric function

Red shifted and broadened

Figure 5. (Left) Schematic Overview of the measurement principle of the spectroscopic ellipsometry. (Right) A picture of the V-VASE.

Ge versus photon energy in the infrared region obtained by merging the data from FTIR and UV-Visible ellipsometers. (Right) Real ϵ_1 and imaginary parts ϵ_2 of the complex dielectric function of pseudomorphic Ge_{1-v}Sn_v on Ge versus photon energy determined from ellipsometry, assuming a multi layer model GeO₂/Ge_{1-v}Sn_v/Ge.

• E_1 and $E_1 + \Delta_1 \rightarrow 2D$ critical points: $\varepsilon = C - A \ln(E_g - \omega - i\Gamma) e^{i\Phi}$

• $E_0 \rightarrow 3D$ critical points: $\varepsilon \sim C - A (\omega - E_{\varphi} + i\Gamma)^{1/2} e^{i\Phi}$

Figure 12. Compositional and strain dependence of the E₁ critical point for Ge_{1-v}Sn_v on Ge. Solid line is fully relaxed and dashed line is pseudomorphically strained. Circles represent the measured E_1 from ellipsometry. Squares represent the calculated E_1 using deformation potential theory, taking into account the Sn content and degree of relaxation determined from X-ray diffraction. [11]

Conclusion

•Pseudomorphic Ge_{1-x-v}Sn_v on Ge: Indirect –direct transition requires impossibly large Sn content, ~15-20%.

 Increasing the growth temperature of the Ge buffer layer reduces the compressive strain \rightarrow reduces the x (Si) and y (Sn) for the indirect to direct crossover (not significantly).

•Deformation potential theory predicts no indirect to direct band gap crossover for pseudomorphic (fully strained) Ge_{1-v}Sn_v alloys on Ge for Sn < 25%.

•Experimental results obtained from ellipsometry for Ge_{1-v}Sn_v alloys are in good agreement with the prediction.

•Strain relaxation is critical for the indirect-direct transition.

critical points (CPs) with incorporation of Sn.

Photon Energy (eV) Figure 1. Real (ε_1) and imaginary (ε_2) parts of the dielectric function of Ge (solid) and pseudomorphic $Ge_{90}Sn_{10}$ on Ge (dashed).

intensity versus diffraction angle for the symmetric (004) ω-2θ X-ray reflection is shown in the inset. (Middle) X-ray reflectivity spectrum of a 33 nm thick GeO₂ on Ge. Electron density profile obtained from the model for the same sample is shown in the inset. (Right) Atomic force microscopy image of the $Ge_{0.094}Sn_{0.096}$ surface showing an RMS roughness of 1.6 nm.

Acknowledgement

This work was supported by the Air Force Office of Scientific Research (FA9550-13-1-00222) and by the Army Research Office (W911NF-14-1-0072). Support during 2016 was provided by the National Science Foundation (DMR-1505172). FTIR measurements were performed by Stefan Schoeche and James Hilfiker at J.A. Woollam Co., Inc., Lincoln, NE.

References

3 nm		
.6 nm	1.	M. El Kurdi, G. Fishman, S. Sauvage, and P. Boucaud, J. Appl. Phys. 107 , 013710 (2010).
	2.	G. He and H.A. Atwater, Phys. Rev. Lett. 79 , 1937 (1997).
	3.	J. Mathews, R.T. Beeler, J. Tolle, C. Xu, R. Roucka, J. Kouvetakis, and J.Menendez, Appl. Phys. Lett. 97, 221912 (2010).
	4.	C. Eckhardt, K. Hummer, and G. Kresse, Phys. Rev. B 89 , 165201 (2014).
	5.	H.J. Osten, J. Appl. Phys. 84 , 2716 (1998).
	6.	M. Chandrasekhar and F.H. Pollak, Phys. Rev. B 15, 2127 (1977).
	7.	J. Menendez and J. Kouvetakis, Appl. Phys. Lett. 85 , 1175 (2004).
	8.	M.R. Bauer, J. Tolle, C. Bungay, A.V.G. Chizmeshya, D.J. Smith, J. Menendez, and J. Kouvetakis, Solid State Commun. 127, 355 (2003).
	9.	V.R. D'Costa, W. Wang, Q. Zhou, E.S. Tok, and Y.C. Yeo, Appl. Phys. Lett. 104 , 022111 (2014).
	10.	A. Attiaoui and O. Moutanabbir, J. Appl. Phys. 116 , 063712 (2014).
	11.	R. Hickey, N. Fernando, S. Zollner, J. Hart, R. Hazbun, and J. Kolodzey, J. Vac. Sci. Technol. B 35 , 021205 (2017).
	12.	L. Vina, S. Logothetidis, and M. Cardona, Phys. Rev. B 30 , 1979 (1984).
	13.	V. R. D'Costa, W. Wang, and Y. Yeo, J. Appl. Phys. 120 , 063104 (2016).
	14.	M. Medikonda, G.R. Muthinti, R. Vasic, T.N. Adam, A. Reznicek, M. Wormington, G. Malladi, Y. Kim, Y.C. Huang, and A.C. Diebold, J. Vac. Sci.
		Technol. B 32 , 061805 (2014).
	15.	V.R. D'Costa, W. Wang, Q. Zhou, T.K. Chan, T. Osipowicz, E.S. Tok, and Y.C. Yeo, J. Appl. Phys. 116 , 053520 (2014).