

Applying visual variables to manufacturing data for enhanced decision-making

William (Bill) Bernstein, PhD NIST, Systems Integration Division Life Cycle Engineering Group wzb@nist.gov

Outline

Visual variables & information visualization (InfoVis)

- Three visualization-related projects
 - Mapping MTConnect data to solid models
 - Exploring functional relationships of KPIs
 - Representing similarities for manufacturing processes

- Moving forward
 - Data Information Visualization & Exploration (DIVE) Lab

neering

engi

Outline

Visual variables & information visualization (InfoVis)

- Three visualization-related projects
 - Mapping MTConnect data to solid models
 - Exploring functional relationships of KPIs
 - Representing similarities for manufacturing processes

- Moving forward
 - Data Information Visualization & Exploration (DIVE) Lab

Example

Bernstein WZ, Ramanujan D, Kulkarni D, Tew J, Elmqvist N, Zhao F, Ramani K, Mutually coordinated visualization of product and supply chain metadata for sustainable design, *Journal of Mechanical Design*. 137(12). 2015

engineering laboratory

4

Selecting the right visual variable

		Characteristics				
		Selective	Associative	Quantitative	Order	Length
Visual Variables	Position	•	•: :•	^	••••	Theoretically Infinite
	Size	•	••••		• > • >•>•	Selection: ~5 Distinction: ~20
	Shape					Theoretically Infinite
	Value	0_0_0_0			0<0< 0<0<● <	Selection: <7 Distinction: ~10
	Color	•				Selection: <7 Distinction: ~10
	Orientation	ノー				Theoretically Infinite
4	Texture		0000			Theoretically Infinite

Adapted from Prof. Sheelagh Carpendale, Dept. of CS, University of Calgary

Bernstein WZ, Ramanujan D, Kulkarni D, Tew J, Elmqvist N, Zhao F, Ramani K, Mutually coordinated visualization of product and supply chain metadata for sustainable design, *Journal of Mechanical Design*. 137(12). 2015

5

Distilling design patterns

Goal: Suggest design patterns for InfoVis-based tools used in manufacturing

Task-by-type taxonomy	Example of design patterns for sustainable product design
T1: Overview	P1: Indicator-overviews P2: Eco-prominence P3: Eco-persistence
T2: Zoom	P4: Intent-based aggregation P5: Multiscale design exploration
T3: Filter	P6: Emphasis on design similarities P7: Collaborative pruning
T4: Details-on-demand	P8: Interactive detailing of hidden dimensions
T5: Relate	P9: Co-ordination of lifecycle views P10: Linking eco-indicators through the lifecycle
T6: History	P11: Eco-location P12: Shareable exploration trails
T7: Extract	P13: Exploration snippets

Ramanujan, D., Bernstein, W. Z., Ramani, K., 2017. "Design patterns for visualization-based tools in sustainable product design." *Proceedings of the ASME 2017 IDETC/CIE*. To appear.

engineering laboratory

Outline

Visual variables & information visualization (InfoVis)

- Three visualization-related projects
 - Mapping MTConnect data to solid models
 - Exploring functional relationships of KPIs
 - Representing similarities for manufacturing processes

- Moving forward
 - Data Information Visualization & Exploration (DIVE) Lab

engineering

NIST Smart Mfg. Systems Test Bed

Goals:

- Reference architecture and implementation
- Rich source of data for fundamental research
- Physical infrastructure for standards and technology development
- Demonstration test cases for education

http://smstestbed.nist.gov

engineering

Available data

- Design model data in native and STEP standard format (*as designed*)
- Milling program as NC code in ISO 6983 standard format (*as planned*)
- Manufacturing execution data in MTConnect standard format (*as executed*)
- Inspection data in QIF standard format (as inspected)

Visualization pipeline for smart manufacturing

Mapping machine data w/ virtual models

Standard representations of design and manufacturing data

Design Data

#131=DIRECTION(' ',(1.,0.,0.)); #136=AXIS2_PLACEMENT_3D(' ',#126,#121,#131); #141=PLANE('',#136); #146=CARTESIAN_POINT(' ',(-8.361367154208E-16... #151=DIRECTION(' ',(1.087705058168E-16,1.,0.)); #156=VECTOR(' ',#151,1.); #161=LINE('',#146,#156); #166=CARTESIAN_POINT(' ',(-8.361367154208E-16... #167=VERTEX_POINT(' ',#166); Manufacturing Data

2016-05-09T11:46:51.4561882|path_pos|15.0998... 2016-05-09T11:46:51.6080052|path_pos|15.0998... 2016-05-09T11:46:51.7522062|path_pos|15.0998... 2016-05-09T11:46:52.0400562|path_pos|15.0998... 2016-05-09T11:46:52.0402782|Cposition|359.9848 2016-05-09T11:46:52.1841042|Cposition|359.9847 2016-05-09T11:46:52.6160032|path_pos|15.0998... 2016-05-09T11:46:52.6161842|Yposition|-37.80295 2016-05-09T11:46:52.7602052|path_pos|15.0998...

12

Video: Initial prototype

Bernstein WZ, Hedberg Jr, TD, Helu, M, Barnard Feeney, A. Contextualizing Manufacturing Data for Lifecycle Decision Making. *International Journal of Product Lifecycle Management.* Under review..

Knowledge generated from case study

- Expected cycle time for one feature was 15 seconds, but measured results show actual time was 80 seconds
- Feed rate mismatch affects production schedule

Retrieve models and data at: http://smstestbed.nist.gov/tdp/d2mi

Feng, S, Bernstein WZ, Hedberg Jr, T, Barnard Feeney, A, Towards Knowledge Management for Smart Manufacturing. *Journal of Computing and Information Science in Engineering.* Under review.

Outline

Visual variables & information visualization (InfoVis)

- Three visualization-related projects
 - Mapping MTConnect data to solid models
 - Exploring functional relationships of KPIs
 - Representing similarities for manufacturing processes

- Moving forward
 - Data Information Visualization & Exploration (DIVE) Lab

Background – ISO 22400

KPI description		
Content		
Name	Overall equipment effectiveness index	
ID		
Description	The OEE index represents the availability of a work unit (see <u>Table 9</u>), the effectiveness of the work unit (see <u>Table 10</u>), and the quality ratio (see <u>Table 11</u>) KPIs integrated in a single indicator.	
Scope	Work unit, product, time period, product, defect types	
Formula	OEE index = Availability * Effectiveness * Quality ratio	
Unit of measure	%	
Range	Min: 0%	
	Max: 100%	
Trend	The higher, the better	
Context		
Timing	On-demand, periodically, real-time	
Audience	Operator. supervisor, management	
Production methodology	Discrete, batch, continuous	
Effect model diagram	See <u>Figure A.6</u>	
Notes	Overall equipment effectiveness (OEE) is an indicator for the efficiency of work units, work centres and areas with several work units or an entire work centre. The OEE index forms the basis for improvements by better production information, identification of production losses, and improvement of the product quality by optimized processes.	
	The calculation of OEE based on the hierarchy structure (see Figure 2) is only useful if the characteristic of the work unit processes would be comparable. Before starting a benchmark based on the OEE index the criteria for comparability should be checked.	

ISO 22400: Automation systems and integration – Key Performance Indicators (KPIs) for manufacturing management

engineering laborator

Background

Overall Equipment Effectiveness = Availability · Effectiveness · Quality Ratio

Availability = <u>Actual Production Time</u> Planned Busy Time

Effectiveness = <u>Planned Run time per Item · Produced Quantity</u> Actual Production Time

Quality Ratio = <u>Good Quantity + Rework Quantity</u> Produced Quantity

Kang, N., Zhao, C., Li, J., Horst, J.A., A Hierarchical structure of key performance indicators for operation management and continuous improvement in production systems, International Journal of Production Research, 6333-6350, 2015

Node-Link Diagrams

engineering

Brundage, MP, Bernstein, WZ, Morris, KC, Horst, JA. Graph-based Visualizations to Explore KPI Relationships. *Proceedings of the CIRP LCE 2017.* To appear.

18

Matrix-based visualization

Brundage, MP, Bernstein, WZ, Morris, KC, Horst, JA. Graph-based Visualizations to Explore KPI Relationships. *Proceedings of the CIRP LCE 2017.* To appear.

engineering laboratory

Matrix-based visualization

Brundage, MP, Bernstein, WZ, Morris, KC, Horst, JA. Graph-based Visualizations to Explore KPI Relationships. *Proceedings of the CIRP LCE 2017.* To appear.

engineering

Exploring "what-if" scenarios

Node Link

Matrix Based

Line Thickness show change Quickly shows KPI performance

Color map shows change Only shows change in KPIs with changing metrics

engineering

21

Brundage, MP, Bernstein, WZ, Morris, KC, Horst, JA. Graph-based Visualizations to Explore KPI Relationships. *Proceedings of the CIRP LCE 2017.* To appear.

Prototype interface

Brundage, MP, Bernstein, WZ, Morris, KC, Horst, JA. Graph-based Visualizations to Explore KPI Relationships. *Proceedings of the CIRP LCE 2017.* To appear.

engineering

laboratory

Video: Initial prototype

MIRI: Metric-Indicator Relationship Interface Availability Setup Ratio Goal KPIs represented as Goal small multiples with 2 real-time updating of related metrics. **Blockage Ratio** Allocation Efficiency Goal Goal AUST APT ADOT **BLT** STT **Technical Efficiency** Starvation Ratio Goal Goal Planned Busy Time (PBT): 1145 Utilization Efficiency TE A AE Actual Unit Processing Time (AUPT): 1000 Goal AUST Actual Unit Busy Time (AUBT): 1020

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% APT 0.0% 100.00 ACTUAL UNIT SETUP TIME (AUST) ADOT 0.0% 0.0% 0.0% BLT 0.0% ACTUAL PRODUCTION TIME (APT) STT 20.00 ACTUAL UNIT DOWN TIME (ADOT) PBT 0.0% 0.0% AUPT 15.00 BLOCKING TIME (BLT) AUBT 110.00 STARVATION TIME (STT) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Brundage, MP, Bernstein, WZ, Morris, KC, Horst, JA. Graph-based Visualizations to Explore KPI Relationships. *Proceedings of the CIRP LCE 2017.* To appear.

23

X

engineering laboratory

UE

SeR

BL

ST

Outline

Visual variables & information visualization (InfoVis)

- Three visualization-related projects
 - Mapping MTConnect data to solid models
 - Exploring functional relationships of KPIs
 - Representing similarities for manufacturing processes

- Moving forward
 - Data Information Visualization & Exploration (DIVE) Lab

Guiding questions

• How can we visualize the similarities of capabilities of manufacturing processes?

 How can we use these principles for better lookup in a large database?

Li, K and Bernstein, WZ, "Developing a capability-based similarity metric for manufacturing processes," Accepted to ASME MSEC 2017. Best paper finalist.

Similarity based on taxonomic representation

$$D(a_1, a_2) = \frac{pathlength(a_1, a_2)}{pathlength(a_1, a_2) + (k * depthLCA(a_1, a_2))}$$

Ramanujan D, Bernstein WZ, Benjamin W, Elmqvist N, Ramani K, Kulkarni D, Tew J, Enabling sustainability-aware design reuse through metadata visualization, *Journal of Mechanical Design*. 2015 (In Review)

Classification of Manufacturing Processes

	<material state=""></material>		
<energy type=""></energy>	Shape change	<mechanism></mechanism>	
Mechanical	Size change	Deformation	
Thermal	Volume change	Fracture	
Chemical	Mass change	Flow	
Electro mechanical	Quantity change	Mixing	
Thermo Electrical	Bulk Property change	Transport	
Electro optical	Location change	Heating and	
Electro chemical	Surface Property change	Cooling	
	Phase change		
	$\nabla \wedge \pi$		
<precedence></precedence>	📉] [📈	< Initial Material State>	
Primary Processes		Solid Processes	
Secondary processes	Process	Liquid Processes	
Pre-Processes	Universe 🔽	Powder Processes	
Post-Processes		Vapor processes	
		Sheet metal Processes	
	ı		
<function></function>	<automation></automation>	<material type=""></material>	
Machining	Manual	Metal Processing	
Joining	Action support	Polymer Processing	
Forming	Batch processing	Composites	
Assembly	Shared control	Ceramics Processing	
Material Handling	Decisions control	Semiconductor Processes	
Inspection	Supervisory Control	Micro and Nano processes	
Finishing &	Rigid system		
Coating	Full automation		
l			

Kumaraguru, S., et al., 2014. Faceted classification of manufacturing processes for sustainability performance evaluation. *The International Journal of Advanced Manufacturing Technology*, 75(9-12), pp.1309-1320.

engineering laboratory

Visualizing similarities of manufacturing processes

Example:

Blow Molding — {"Thin-walled: Cylindrical"; "Thin-walled: Cubic"; "Thin-walled: Complex"}

Die Casting {"Thin-walled: Complex"; "Solid: Cylindrical"; "Solid: Cubic"; "Solid: Complex"}

Li, K and Bernstein, WZ, "Developing a capability-based similarity metric for manufacturing processes," Accepted to ASME MSEC 2017. Best paper finalist.

Visualizing similarities of manufacturing processes

Li, K and Bernstein, WZ, "Developing a capability-based similarity metric for manufacturing processes," Accepted to ASME MSEC 2017. Best paper finalist.

engineering

laboratory

Outline

Visual variables & information visualization (InfoVis)

- Three visualization-related projects
 - Mapping MTConnect data to solid models
 - Exploring functional relationships of KPIs
 - Representing similarities for manufacturing processes

- Moving forward
 - Data Information Visualization & Exploration (DIVE) Lab

Data Information Visualization & Exploration Lab

- Demonstrate practical use cases for data exploration
- Identify and demonstrate "design patterns" for mfg-based visualizations

engineering

31

laboratory

• Quicken the design, prototyping and implementation of new interfaces

Hardware & software considerations

Hardware options:

- MSFT Surface Hub
- CINTIQ Pen & Touch
- Intuous Pen & Touch
- MSFT Kinect
- Tablets, etc.
- VR

*Interact with NIST Library

Software options:

- Open: Cytoscape, JigSaw, NodeXL, Processing 3, Gephi, Keshif.js
- Commercial: Power BI, Tableau, IBM Watson

Middleware options:

 Open: libavg, Polychrome, Webstrates, Sage II

32

Thank you!

Questions? Comments? Suggestions?

William (Bill) Bernstein, PhD (301) 975-3528 • wzb@nist.gov Systems Integration Division, NIST