

Model-Driven Innovation

The Role of Multi-domain Dynamic Models for Functional Verification in Model-based Systems Engineering (MBSE)

Paul Goossens, VP, Engineering Solutions, Maplesoft

Joydeep Banerjee, Application Engineer, Maplesoft

Andy Ko, Ph.D., Manager of Engineering Services, Phoenix Integration

NIST MBE Summit 2017, Gaithersburg, MD

Systems Design & Development Process

Model-based Systems Engineering vs Model-based Engineering

With apologies to George and Ira...

I say "system engineering", you say "systems engineering". ...Let's call the whole thing off...

Model-based Systems Engineering vs Model-based Engineering

Multi-domain Systems Design

Modelica: Object-oriented Physical Modeling

connect (EMF2.n, G2.p) annotation (Line (points = {{228.0,158.0}}

Functional Verification against formal requirements models

Symbolic Tools for Design-space Exploration

PHX ModelCenter

PHX Systems Engineering Integration Module

Systems Engineering: Architectural Model

act par

MBSE Analyzer

Domain Engineering: Executable Analysis Model

 Connect systems architecture models with engineering analyses to calculate system performance, check requirements, and perform design trade-offs

- Capabilities
 - Execute SysML parametric diagrams to evaluate designs
 - Perform requirements compliance analysis using modeling and simulation
 - Perform design trade-off studies
 - Update SysML models with analysis results
 - Import engineering analyses into a SysML model

Electric Vehicle: Battery System Thermal Performance

Lithium-ion battery

system

Battery Power Electronics and Cooling

Stored Energy

- Battery Capacity
- State-of-Charge
- Affects driving range

Temperature Control

- Heat flow to/from battery
- Thermal effects on battery performance
- Active/passive cooling system

Electric Vehicle: Battery System Thermal Performance

Safety requirements

- Battery must operate in a safe temperature range
- Roll / pitch acceleration must be under a certain target
- Stopping distance should not be more than a specific target

Performance requirements

- Maximum acceleration / speed should be more than designated targets.
- Must be operable within a designated range

Battery requirements

- Battery mass, energy density
- Max/min operating temperature
- Max/min peak temperature
- Efficiency vs SOC characteristics
- State of Health characteristics

Cooling system requirements

- Heat transfer characteristics
- Maximum heat transfer rate
- Temperature control system
- Multi-component cooling
- Maximum weight of the system
- Critical temperature detection

Architectural Model Requirement Diagram

Block Definition Diagram (1) Context Def.

Architectural Model Parametric Diagram

The Satisfy Relationship with Requirements

Analytical Model Multi-domain System-level Dynamics

© 2017 Maplesoft, a division of Waterloo Maple Inc.

Normal Loading 25°C Ambient, Gentle Grades

Extreme Loading 35°C Ambient, Steep Grades

Requirements Compliance Testing

Summary

- MBSE: Process is being increasingly automated through architectural modeling tools
- MapleSim provide rapid functional verification of complex multidomain dynamic systems
- Maple provides powerful environment for data pre- and postprocessing as well as managing executable requirements
- ModelCenter brings everything together for rapid requirements-compliance testing, trade-off studies, and impact analysis due to changes in design requirements
- Convergence of tools helps realize the Systems Design ("V") process

Thank You

Questions?

