

Ultra-thin ALD HfO2 Growth Mechanism Studied By Atomic Force Microscope (AFM)

Charles C Wang Steven Hung Naomi Yoshida Tatsuya E Sato Yuri Uritsky

Applied Materials Inc.

Outline

- Introduction
- Description of analytical techniques used in this study
- Influence of silicon oxide interface layer (IL) surface chemistry on the HfO2 growth
 - Growth rate, surface coverage and morphology
- HfO2 growth mechanism
- Correlation of HfO2 morphology with leakage current performance
- Conclusions

Introduction

Incentives of high-k HfO₂ gate dielectric

- Tradition SiO2 and SiON delectrics cannot sustain low gate leakage current (Jg) for EOT below 10 Å
- Higher k dielectrics can afford large physical thickness to reduce Jg

Smaller Jg

•Why SiO₂ and SiON based dielectrics are hard to replace?

- Natively grown, high purity, conformal, dense and stable!
- Good electrical properties: low defect density and good interface property

Challenges of HfO₂ deposition processes

- ALD process for conformal deposition
- Control of composition, impurity content, phase and crystallinity
- Density and uniformity affecting current leakage property
- Interface with Si channel interface roughness induced carrier scattering

³ FCMN 2017

Introduction

Interface engineering is important in high-k/metal gate processing

Descriptions of analytical techniques

RBS – Measures surface dose of Hf

- Energy of scattered He depends on the atomic # of the atoms on surface
- 10¹¹ atoms/cm² detection limits for Hf
- For determination of HfO2 growth rate

AR-XPS - Measures thin hafnium oxide composition and coverage

- Atomic force microscope (AFM, non-destructive)
 - Imaging of film morphology at different stages of film growth, best for providing direct film growth mechanism information
 - Not successfully applied before due to easy tip damage and low image resolution

Pros and cons of AFM for high resolution imaging Comparison with secondary electron microscope

Low tip damage technique development Non-contact AFM

Non-contact AFM technique considerably prolongs tip life and improves image quality

C. C. Wang, Y. Pu, L. Fu, Y. Ma and Y. S. Uritsky, *AIP Conference Proceedings* **788**, 194-199 (2005) B. Liu, C. C. Wang, P. Huang and Y. S. Uritsky, *Proc. of SPIE* **7729**, 77290O-1-77290O-11 (2010)

High resolution AFM tip development

Proprietary AFM tip sharpening technique to improve resolution > 1.5X

- Considerable improvement in lateral resolution.
- In-house tip sharpening avoids shipping, handling and aging damage to AFM tip.

HfO₂ growth study – descriptions of ALD HfO₂ samples

TABLE 1. Descriptions of the Six IL sample groups, on which ALD HfO₂ films[@] were deposited

Group No.	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6
IL type/thickness^	IL1/10 Å	IL2/15 Å	IL3/15 Å	IL4/15 Å	IL5/15 Å	IL6/12 Å
Oxide process*	T1	T1	T2	Т3	T1	ChemOx#
Surface treatment	none	none	none	none	SC1(25°C)+	none

^(a) 0, 5,11, 17 and 23 cycles of ALD HfO_2 films were deposited on the different IL layers to study the HfO2 growth mechanism.

^ Thicknesses of the IL layers were verified by XPS measurements.

* "T" stands for thermally grown oxide.

* ChemOx is the oxide formed on Si surface by SC1 clean (NH4OH + H2O2 in DI water at 87°C). It is abundant in OH-terminated sites on surface.

+ IL5 was IL1 dipped in SC1 (25°C) solution for a few seconds then rinsed clean with DI water.

HfO₂ growth study – AFM images of IL with no HfO₂ film

IL1 10Å IL2 15Å IL5 15Å

Both IL1 and IL2 surfaces have more tiny protruding features.

IL5 surface is slightly smoother than both IL1 and IL2 surfaces and is without the tiny protruding features.

All the surfaces are not atomically flat (rms roughness > 0.5nm).

HfO₂ growth study – RBS and XPS results

♦ IL1 10A △ IL3 15A ■ IL5 (Tox surface treated with SC1 solution)

- Linear growth rate of HfO₂ film on IL5 is observed.
- Similar growth rates are observed on all the other four thermally grown IL types.
- Initial Growth rate on thermally grown ILs = ½ initial growth rate on IL5 (thermally grown IL with ChemOx treatment).
- XPS coverage study showed that HfO₂ has higher initial coverage on IL5 than on the other four IL types. At higher coverages, XPS coverage failed to distinguish the difference of HfO2 films on the different types of ILs.

HfO₂ growth study – AFM roughness results

◆ IL1 10A	▲ IL3 15A	IL5(Tox surface treated with SC1 solution)
L2 15A	🗖 IL4 15A	IL6 (ChemOx)

HfO₂ films deposited on IL5 shows no increase in roughness with increasing ALD cycle #.

• HfO₂ films deposited on all other four types of thermally grown ILs show large increase in roughness at 5 ALD cycles then gradual decrease in roughness with increasing ALD cycle #.

FCMN 2017

HfO2 growth study – HfO2 AFM imagesALD HfO2 on 15 Å IL1Yellow # indicates ALD cycle

ALD HfO₂ on 15 Å IL5

Numerous tiny nodules can be seen on 15 Å IL1 after 5 cycles of HfO₂ growth, indicating islands growth mechanism. Such was observed on all the other three thermally grown IL layers.

No morphology change after 5 cycles of HfO₂ on 15 Å IL5, indicating conformal growth mechanism.

FCMN 2017

HfO₂ growth study – growth mechanism hypothesis

On all thermally grown ILs

Islands (three dimensional) growth – due to scarcity of –OH terminated nucleation sites

 Growth rate increases with the increase of surface area

HfO2 films are porous and nonuniform

On thermally grown IL treated with SC1 (IL5)

Layer by layer (two dimensional) growth – due to abundance of –OH terminated nucleation sites

- Growth rate stays the same
- HfO₂ films are dense and uniform

Justin C. Hackley, Theodosia Gougousia and J. Derek Demaree, JOURNAL OF APPLIED PHYSICS 102, 034101 (2007)

FCMN 2017

HfO₂ growth study – correlation with electrical tests

Three data points are from center, middle radius & edge of the wafer.

- The IL5 with 1.5 nm HfO₂ shows X1000 lower Jg than the other ILs with the same thickness HfO₂
 - The IL5 wafer shows better within wafer uniformity in Jg test.
 - Jg data correlates with AFM morphology study results well!

Conclusions

- New AFM imaging techniques were developed that enables the direct observation of the morphology of ALD films during the initial stages of film growth
- The same technique can be used to study
 - o the continuity of ultra-thin film
 - Morphology of nano-crystalline materials
 - o 2-dimentional materials

• AFM study of the ALD HfO₂ on different ILs

- reveal that Islands growth on thermally grown SiO₂ ILs results in less dense HfO₂ and its higher leakage current
- validates the conformal growth of ALD HfO₂ on SC1 treated SiO₂, which is abundant with hydroxyl (-OH) groups that facilitate the uniform nucleation of the HfO₂ and growth of a dense HfO2 film that in turn results in low leakage current.

