Quantum Noise Effects in e-Beam Lithography and Metrology

T Verduin, MD Hermans, SR Lokhorst, CW Hagen and P Kruit

Delft University of Technology, Department of Imaging Physics, Lorentzweg 1, 2628 CJ Delft, The Netherlands, e-mail: <u>C.W.Hagen@tudelft.nl</u>

In lithography Line Edge Roughness (LER) and Critical Dimension (CD) determine the throughput through the resist sensitivity, and therefore tool investments - Three questions are addressed:

1.Does a CD-SEM measurement of LER really tell us what we want to know?

1. Construct PMMA lines on Si with rough sidewalls

2. Use electron-scattering Monte Carlo simulations

.... to simulate SEM images and add

3. Determine LER, as a function of the parameters, from these top-down SEM images

.... using a power spectral density analysis

Bias depends on the resist thickness (height)

2. Can we simulate the relation between the actual shape of the resist line and the CD measurement?

1. Acid generation at every inelastic interaction, no stochastics from PAG distribution, no roughness from molecular size distribution (only possible on GPU: 2.000 primary electrons in parallel; 100.000 scattered electrons in parallel)

3. Determine equal solubility surfaces

32nm x 1 μ m; $\sigma_{diffusion} = 5$ nm Narrower at the top because SE's escape, at the bottom because fewer SE's are created in Si than in PMMA

- - - 60 μC/cm² · 40 μC/cm²

4. Determine LER as a function of depth

average line edge roughness [nm]

5. Triangulate the solubility surfaces,

... simulate top-down SEM images and determine the LER

2. Simulate acid diffusion during post exposure bake, substitute each acid by a 3D Gaussian distribution, mirror acid diffusion at the resist surfaces

XY slice at 50 nm from top surface. White line is threshold at 0.5

			(a) I	D=80 p	$\rm nC/cm^2$			
400	300	200	100	0	-100	-200	-300	-400
		2				65		0 -20 -40
							1	-60 -80 -100
			(b) 1	D = 601	ıC/cm ²			
400	200							

400 300	200 100	0	-200	-300	-400 0 -20 -40 -60
				1.000	-100
	(c) D	$=40\mu\text{C}/c$	cm^2		

3D-view of the solubility

surfaces; threshold at 0.5

exposure dose $[\mu C/cm^2]$	imaging energy [keV]	LER [nm]
80	0.5	1.32 ± 0.13
80	1.0	1.24 ± 0.12
80	5.0	0.98 ± 0.10
60	0.5	1.63 ± 0.16
60	1.0	1.56 ± 0.16
60	5.0	1.24 ± 0.12
40	0.5	1.72 ± 0.17
40	1.0	1.56 ± 0.16
40	5.0	1.32 ± 0.13

LER increases at lower dose (shot noise) LER decreases with imaging energy

3. Is a CD SEM LER measurement reproducible?

1. Exposure in the CD SEM brings about changes in the resist. Therefore we try to measure at minimum dose

2. We integrate the line pattern along the line-direction

3. Fit the integrated line profile to a model which contains the x-position ...

Introduce a model based on two merged Gaussians :

 $b_L + (1 - b_L) \exp (b_L + b_L) \exp (b_L + b_L)$

 $P(x) = \langle$

4. Results. Severe resist shrinkage within what is a normal acquisition dose (10 electrons/nm² = 160 μ C/cm²)

Images acquired at lowest possible dose of a Hitachi CG4000 CD SEM by I.Servin of CNRS-LTM/CEA-LETI

300eV, 10pA corresponding to 1 electron/nm ², or 16 μ C/cm²

Pitch = 72 nm

relative scan position [nm]

References:

- T. Verduin, P. Kruit, C.W. Hagen, J. Micro/Nanolith. MEMS MOEMS **13** (2014) 033009
- T. Verduin, S. R. Lokhorst, P. Kruit, C.W. Hagen, Proc. of SPIE **9424** (2015) 942405-1
- T. Verduin, S. R. Lokhorst, C.W. Hagen, P. Kruit, Proc. of SPIE **9778** (2016) 97781Z-1

Severe resist shrinkage in the very first few frames of CD SEM imaging

