

Monitoring Accuracy And Robustness In On-Product Diffraction-Based Overlay Metrology

Arie den Boef¹, Kaustuve Bhattacharyya¹, Marc Noot¹, Aigin Jiang², Martin Jak¹

¹ASML Netherlands B.V., P.O. Box 324, 5500 AH Veldhoven, The Netherlands

²ASML, 320 Ushers Road, Ballston Lake, NY 12019, USA

Introduction

Over the last couple of years Diffraction-Based Overlay metrology (µDBO) has become a Tool-of-Record on many critical layers in logic and memory devices. In µDBO overlay is determined from an intensity difference ΔI between the +1st and -1st diffraction order of light that is diffracted by 2 overlapping gratings.

The optical coupling between these overlapping gratings results in a wavelength-dependent overlay sensitivity K which can be shown with a simplified theory of the μ DBO signal formation.

In this poster we will show how µDBO deals with 2 challenges in overlay metrology: Asymmetric grating asymmetry (caused by processing steps like etch and CMP) and grating imbalance (caused by CMP and spin coat).

Selecting a Robust Measurement Recipe

Grating asymmetry causes a small offset ΔI_{BG} in the measured µDBO signal. The resulting overlay error can be minimized by picking a wavelength with a large overlay sensitivity K.

Grating imbalance results in a small difference ΔK of the overlay sensitivity. The resulting overlay error can be eliminated by picking a recipe where K is insensitive to small process changes. A good indicator for this is the σ_k/K variation over the wafer.

According to the simplified swing-curve theory, the best wavelength should be near a peak of the overlay sensitivity K as a function of wavelength. In that region the sensitivity for process changes is low.

Measured swing curve on different production layers. Shaded areas are the best wavelength regions where K is large and σ_{k}/K low.

Monitoring Grating Imbalance (GI)

Image plane detection of µDBO has a unique capability for run-time detection of (changes in) Grating Imbalance (GI).

GI shows up as a stack variation within a grating. It's impact on overlay can be quantified in a nm-number by measuring GI and Overlay on a per-pixel basis in a

measured GI data

grating image as shown in the drawing.

A plot of overlay as function of GI is a straight line. For a good recipe this slope should be 0 which indicates that GI has no impact on OV.

Monitoring Bottom Grating Asymmetry (BGA)

A large measurement spot can simultaneously measure overlay from a µDBO target and a Bottom Grating Asymmetry (BGA) intensity signal from a dedicated bottom grating (BGA target).

We can use the simplified µDBO signal formation theory to calculate an estimated asymmetry-induced overlay error that from the measured BGA intensity signal.

This run-time overlay error estimation can flag sudden process changes in a high-volume manufacturing environment.

KPI	Description	Wafer 1	Wafer 2
On product overlay		X nm	~ 2X nm
Stack Sensitivity (mean)	OVL signal contrast	-0.349	-0.350
Overlay sensitivity (K) (mean)	process dependency of OV	31.294	30.947
σ(K)/mean(K)	Overlay Signal to Noise	0.047	0.044
Grating Imbalance (m3s)	stack variation within the target real-estate	0.141	0.160
BGA intensity (99.7%)	Bottom grating asymmetry	7.581	31.111
BGA error in "nm" (99.7%)		1.566	5.916

BGA map

in "nm"

Same recipe is used

An excursion wafer (#2) is successfully detected by BGA KPI where bottom grating asymmetry (BGA) impacting overlay measurement: here BGA increased significantly and other KPIs (such

as contrast etc.) are not impacted