Optical Constants of Ni_{1-x}Pt_x and Ni_{1-x}Pt_xSi for Inline Metrology of Ohmic Contacts

Lina S. Abdallah,* <u>Stefan Zollner</u>, New Mexico State University, Las Cruces, NM Christian Lavoie, Ahmet Ozcan, IBM, NY Mark Raymond, GLOBALFOUNDRIES, 255 Fuller Rd., Albany, NY * Now at Intel Corporation, 2501 NW 229th Ave, Hillsboro, OR

araduate Students:

na Abdalah, Travis Willett-Gles, Nalin Fernando, Dennis Trufilo, Falek Ta

Cesar Rodriguez, Nathan Nunley, Khadijih Mitchell, Cayla Nelson, Laura Pineda, Ero Des Luis Barrera, Chris Zollner, Cornell), Amber Medina, Maria Spies, Ayana Ohosh (Michigan <u>Collaborators:</u>

Igal Brener (CINT), Neha Singh, Harland Tompkins (J.A. Woollan, Co.), S.G. Choi (NREL) Samples: Demkov (UT Austin), Alpay (UConn), MTI (LAO), SurfaceNet (NIO), IBM. Ohio State

Lina

Flat & uniform films, at least 5 by 5 mm², low surface roughness, films on single-side polished substrate Email: <u>zollner@nmsu.edu</u> http://ellipsometry.nmsu.edu

Units of Optical Constants

- Wavelength λ and photon energy E Wavelength: Specified in nm, μm, or Å Photon energy: Specified in eV E=ħω=hc/λ (633 nm equals 1.96 eV)
- For a metal, n and e diverge in the infrared due to the Drude response of free carriers. This divergence is avoided by the optical conductivity.

Drude Model for Optical Constants of Metals Dielectric function and optical conductivity

Drude-Lorentz Model for Optical Constants of Metals

High reflection Coefficient

Outermost electrons shared by all the surrounding atoms

No band gap: almost any frequency of light can be absorbed.

For metal films $k \neq 0$, ϵ is complex, decomposed into two components

 $\mathcal{E} = \mathcal{E}_{FCA} + \mathcal{E}_{bound}$

$$free carries Bound carries (Drude) (Lorentz)$$

$$free carries (Drude) (Lorentz)$$

St Frontiers of Characterization and Metrology for Nanoelectronics

Ellipsometry Data Analysis

Motivation: Metrology of NiSi for Ohmic Contacts

MOSFET: metal-oxide-semiconductor field-effect transistor

- Low resistivity
- Low formation temperature
- Low Si consumption

32 nm SOI CMOS (Greene *et al.*) industrial self-aligned silicide process

Stefan Zollner, 04/14/2015, Dresden, Germany Frontiers of Characterization and Metrology for Nanoelectronics

8

Ni_{1-x}Pt_x alloy samples and experimental details

- Films were deposited using **Physical Vapor Deposition (PVD)**.
- Different Pt concentrations (0%, 10%, 15%, 20%, 25%)
- with/without annealing (500°C for 30 s)
- Low surface roughness.
- 300 mm wafers.
- Rough backside.

- Room temperature measurements.
- Fourteen angles of incidence (20° to 80°, steps of 5°)
- Broad photon energy range (0.6 to 6.6 eV), 20 meV steps, 300 data points per angle. 2 nm resolution (1 mm slits)
- Each measurement lasts 24 hours.

Frontiers of Characterization and Metrology for Nanoelectronics

Optical constants of Ni and Ni_{1-x}Pt_x alloys

Water absorption metals could be a problem

Must de-gas wafer before ellipsometry measurement to remove atmospheric molecular contamination (water, solvents, etc).

Frontiers of Characterization and Metrology for Nanoelectronics

Ellipsometry of silicide films on Si

- Ni_{1-x}Pt_x (0%, 10%, 20%, 30% Pt)
- Annea 500°C for 30 s
- Thickness of resulting silicide ≈ 2*metal thickness
- SiO₂ is native oxide on NiSi.

- Three angles of incidence:
 65° to 75°
- Vary thickness of silicide to minimize Si substrate artifacts in pseudo-dielectric function.

Stefan Zollner, 04/14/2015, Dresden, Germany Frontiers of Characterization and Metrology for Nanoelectronics

Pseudo dielectric function for mono Ni silicide (0% Pt)

New Mexico State University

14

Optical constants of Ni_{1-x}Pt_xSi

Stefan Zollner, 04/14/2015, Dresden, Germany Frontiers of Characterization and Metrology for Nanoelectronics

16 New Mexico State University

Optical constants of Ni_{1-x}Pt_xSi

Broadening increases as Pt content gets larger.

Summary: Optical constants of Ni_{1-x}Pt_x and Ni_{1-x}Pt_xSi

- Ellipsometry can measure metal and silicide film thicknesses.
 Some sensitivity to Pt content (broadening).
- Data posted at <u>http://ellipsometry.nmsu.edu</u>.
- Pt content broadens interband transitions in metal and silicides, because Pt-5d bands are broader than Ni-3d bands.
- NiPtSi optical conductivity exhibits metallic behavior due to the metallic content as well as interband transitions due to siliconrelated electronic states.
- Free carrier absorption is stronger for unreacted metal than for silicide. However, interband transitions stronger for silicides.
- Interband transition peak gets broader with increasing Pt content in the silicide (can be explained in terms of NiPt DOS).

References

- All data (real and imaginary parts of the dielectric function versus photon energy) are posted on our web page: <u>http://ellipsometry.nmsu.edu</u>.
- We are available to measure flat films deposited by others using our high-accuracy Woollam VASE with autoretarder. Contact <u>zollner@nmsu.edu</u>.
- L. Abdallah, S. Zollner, C. Lavoie, A. Ozcan, and M. Raymond, Compositional dependence of the optical conductivity of Ni_{1-x}Pt_x alloys (0<x<0.25) determined by spectroscopic ellipsometry, Thin Solid Films **571**, 484-489 (2014).
- L. Abdallah, T.M. Tawalbeh, I.V. Vasiliev, S. Zollner, C. Lavoie, A. Ozcan, and M. Raymond, *Optical conductivity of Ni_{1-x}Pt_x alloys (0<x<0.25) from 0.76 to 6.6 eV*, AIP Advances 4, 017102 (2014).
- Lina S. Abdallah, Stefan Zollner, Christian Lavoie, Ahmet S. Ozcan, and Mark Raymond, Optical conductivity of Ni_{1-x}Pt_xSi monosilicides (0<x<0.3) from spectroscopic ellipsometry, J. Vac. Sci. Technol. B **32**, 051210 (2014).
- H. Bentmann, A.A. Demkov, R. Gregory, and S. Zollner, *Electronic and optical properties of PtSi thin films*, Phys. Rev. B 78, 205302 (2008).

