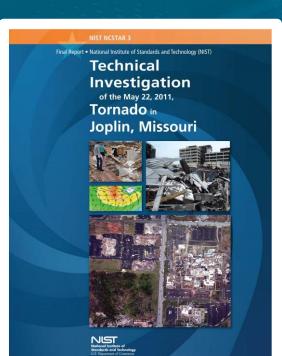
engineering laboratory

May 03rd, 2016 NCST Advisory Committee Meeting

Progress on Implementation of the Joplin Tornado **Recommendations**


Long Phan, Leader, Structures Group, NIST
Melissa Faletra, Wind Engineer, ARA Inc.
Marc Levitan, Acting Director, NWIRP, NIST
Erica Kuligowski, Leader, WUI Fire Group, NIST
Dave Jorgensen, Chief, Warning R&D Div., NSSL, NOAA

Joplin Recommendations

Sixteen recommendations calling for:

- Nationally accepted standards for tornado-resistant design and design methodologies
- Uniform national guidelines that enable communities to create safe and effective public sheltering strategies, tornado shelter standard for existing buildings, and installation of tornado shelters in new and existing buildings

http://dx.doi.org/10.6028/NIST.NCSTAR.3

- National codes and standards and uniform guidance for clear, consistent, recognizable, and accurate emergency communications and joint plans by emergency managers, the NWS, and the media to make sure that accurate and consistent emergency alert and warning information is communicated in a timely manner
- Research, technologies and strategies to advance tornado wind measurements, strengthen emergency communications, increase warning time, derive more accurate tornado hazard maps and improve public response

R #	JOPLIN TORNADO INVESTIGATION RECOMMENDATION SUMMARY	LEAD
1	Development and deployment of technology to measure tornado wind fields	NOAA
2	Archival of tornado event data	NWS
3	Development of tornado hazard maps	NIST
4	Improvement of EF Scale; means for continued improvement; adoption by NWS	NWS
5	Development of performance-based standards for tornado-resistant design	ASCE
6	Development of performance-based tornado design methodologies	NIST, FEMA
7	 a) Development of tornado shelter standard for existing buildings; b) Installation of tornado shelters in more buildings in tornado-prone regions 	ICC
8	Development of guidelines for public tornado sheltering strategies	FEMA
9	Development of guidelines for selection of best available refuge areas	FEMA
10	Prohibition of aggregate coverings or ballast in tornado-prone regions	ICC
11	Development of requirements for enclosures of egress systems in critical facilities	ICC, NFPA
12	 a) Development of tornado vulnerability assessment guidelines for critical facilities; b) Performance of vulnerability assessments by critical facilities in tornado-prone 	FEMA
13	Development of codes, standards, and guidance for emergency communications; Development of joint plan by emergency mgrs/media/NWS for consistent alerts	NFPA
14	Deployment of "push" technologies for transmission of emergency information	FEMA
15	Research to identify factors to enhance public perception of personal risk	NSF, NIST
16	Develop technology for real-time, spatially-resolved tornado threat information engineering labora	NOAA

Summary of March 2015 Briefing

Briefed the committee on the following:

- New project for implementation of Joplin recommendations
- Implementation Plan/Strategy for implementing all 16 recommendations at the earliest possible date, based on code and standard development cycles
- Coordination with standards and codes development organizations (ASCE, ICC, NFPA) and other federal agencies (FEMA, NOAA, NRC, NSF)
 - Conducting/coordinating research to enable development of technology for improved emergency communication, tornado hazard characterization, building performance in tornado, and public perception of risk and response in emergencies

Summary of March 2015 Briefing (Cont'd)

R #	RECOMMENDATION IMPLEMENTATION (red – in progress, black – in planning)	LEAD
1	Development and deployment of technology to measure tornado wind fields	NOAA
2	Archival of tornado event data	NWS
3	Development of tornado hazard maps	NIST
4	Improvement of EF Scale; means for continued improvement; adoption by NWS	NWS
5	Development of performance-based standards for tornado-resistant design	ASCE
6	Development of performance-based tornado design methodologies	NIST, FEMA
7	a) Development of tornado shelter standard for existing buildings; b) Installation of tornado shelters in more buildings in tornado-prone regions	ICC
8	Development of guidelines for public tornado sheltering strategies	FEMA
9	Development of guidelines for selection of best available refuge areas	FEMA
10	Prohibition of aggregate coverings or ballast in tornado-prone regions	ICC
11	Development of requirements for enclosures of egress systems in critical facilities	ICC, NFPA
12	 a) Development of tornado vulnerability assessment guidelines for critical facilities; b) Performance of vulnerability assessments by critical facilities in tornado-prone 	FEMA
13	Development of codes, standards, and guidance for emergency communications; Development of joint plan by emergency mgrs/media/nws for consistent alerts	NFPA
14	Deployment of "push" technologies for transmission of emergency information	FEMA
15	Research to identify factors to enhance public perception of personal risk	NSF, NIST
16	Develop technology for real-time, spatially-resolved tornado threat information	NOAA

Progress Update Since Last Meeting

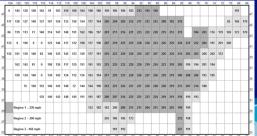
R #	RECOMMENDATION IMPLEMENTATION (Yellow highlighted – further progress since last mtg)	LEAD
1	Development and deployment of technology to measure tornado wind fields	NOAA
2	Archival of tornado event data	NWS
3	Development of tornado hazard maps	NIST
4	Improvement of EF Scale; means for continued improvement; adoption by NWS	NWS
5	Development of performance-based standards for tornado-resistant design	ASCE
6	Development of performance-based tornado design methodologies	NIST, FEMA
7	a) Development of tornado shelter standard for existing buildings; b) Installation of tornado shelters in more buildings in tornado-prone regions	ICC
8	Development of guidelines for public tornado sheltering strategies	FEMA
9	Development of guidelines for selection of best available refuge areas	FEMA
10	Prohibition of aggregate coverings or ballast in tornado-prone regions	ICC
11	Development of requirements for enclosures of egress systems in critical facilities	ICC, NFPA
12	 a) Development of tornado vulnerability assessment guidelines for critical facilities; b) Performance of vulnerability assessments by critical facilities in tornado-prone 	FEMA
13	Development of codes, standards, and guidance for emergency communications; Development of joint plan by emergency mgrs/media/nws for consistent alerts	NFPA
14	Deployment of "push" technologies for transmission of emergency information	FEMA
15	Research to identify factors to enhance public perception of personal risk	NSF, NIST
16	Develop technology for real-time, spatially-resolved tornado threat information	NOAA

Progress Update Since Last Meeting (cont'd)

Recommendation 3 (NIST): NIST recommends that tornado hazard maps for use in the engineering design of buildings and infrastructure be developed considering spatially based estimates of the tornado hazard instead of point–based estimates.

- Existing tornado hazard maps do not account for biases and increased risk of strike on large spatial systems
- Contracted with ARA to develop *Tornado Hazard Maps for Building Design*. Presently 1.5 years into a four-year effort

Progress to date:


- 1. Reviewed the state-of-knowledge on tornado climatology, biases in tornado databases, and tornado risk assessment
- 2. Conducted data analysis and sensitivity studies of factors affecting tornado data to inform tornado hazard maps development plan
- 3. Quantified tornado risk metrics for pilot municipality (Joplin) and sensitivity analysis to guide prioritization of maps development
- 4. Held stakeholder workshop to update key private sector, academic, and governmental stakeholders on progress of the tornado hazard maps development effort (September 2015)

ICC, FEMA 36

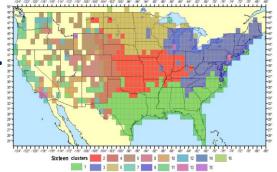
NUREG/CR-4461

enginee

R3: Tornado Hazard Maps Development

Melissa Faletra, *Wind Engineer* Applied Research Associates

NCSTAC Advisory Committee Meeting May 3, 2016


TORNADO RISK MAPS FOR BUILDING DESIGN NIST IDIQ CONTRACT SB1431-12-CQ-0014 Overview

EF DOD 4: Mean 97 mph

expanding the realm of **POSSIBILITY**®

Applied Research Associates, Inc. 8537 Six Forks Rd, Suite 600 Raleigh, NC 27615

ARA Project Team and Tools

- 1. ARA Project Manager: Dr. L.A. Twisdale, Jr.
- 2. ARA Project Staff

expanding the realm of POSSIBILITY

- Ms. Melissa Faletra (M.S. in M.E.) Database Modeling/Analysis
- Dr. Sudhan Banik Windfield and Damage Modeling; TORDAM Code
- Dr. Peter Vickery Damage Modeling
- Dr. Shahriar Quayyum FE Modeling
- Mr. Marsh Hardy (M.S. in Statistics) Statistics
- Other Engineers as needed and Ms. Lisa West Administration
- 3. ARA Tools
 - TORRISK (Tornado hazard curves), TORDAM (tornado damage modeling), TORMIS (tornado missiles), and tornado data analysis tools
 - CLSPT (statistical cluster analysis for tornado regions),
 - HAZUS (hurricane modeling, building stock databases, damage modeling,...)

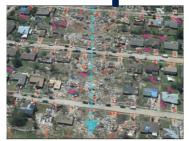
expanding the realm of **POSSIBILITY***

Tornado Hazard Modeling Process Overview

Approach

- 1. Build on existing modeling and analysis tools
- 2. Probabilistic modeling, bias corrections
- 3. Develop engineeringdamage-to-windspeed probabilistic models
- 4. Develop integrated tornado climatological model
- 5. Develop regional variations and iterate
- 5. Finalize PBD metrics and building/system spatial parameters
- 6. Produce regional tornado windspeed hazard curves and associated metrics
- 7. Develop tornado spatial variations/ smoothing for maps

Data	Modeling/Analytics	Climatology &
Databases NWS • SPC • DAT • Storm Data HAZUS Census NLCD HUD • •	Components Reporting Trend Reporting Eras Population Bias F, EF Ratings Path Variable PLIV Region Dependencies Land Use-Land Cover Random Encounter Bias Corrections Correlations	MappingTornado ClimatologyOccurrence RatesTornado DaysPoint ProbabilityPath DirectionElevationLand Fraction•••
Literature Individual Event Data Damage Maps Radar Models 	Tornado Windfield • Single Cell Vortex • Probabilistic Parameters • Intensity • RMW • Translation Speed (V _t) • Vertical Profile	Geospatial Analysis Variables Cluster Analysis Statistical Significance
Tornado Events • Individual Historic • New Data • Field Surveys • Damage Model • Damage Indicators • Tornado Rating, PW, PL • Validation	 Core Slope V₁/V_o (Inflow) Vz (Continuity) Path Width, Path Length Scalable Windspeed -to-Damage TORDAM Tornado Strike Simulations 3D Str. Load Model 	Regionalization Hazard Model Risk Metrics Windspeed Exceedance Frequencies Spatial Characteristics of Building Systems WEF ~ 10⁻³ to 10⁸ per year Other Tornado Effects ?
,	 Probabilistic load/ Resistance Failure Mode Sequence WBD Loads Internal Pressure Progressive Failure Damage States 	Tornado Hazard Maps • Spatial Smoothing for Contours • Supporting Tables/Data



Damage vs.Windspeeds

 Tornado Intensity Ratings (max windspeed) are based on observed damage.

expanding the realm of POSSIBILITY[®]

- Fujita (F) Scale adopted in 1977, EF in 2007
- The windspeeds associated with the damage scales are based on <u>subjective estimates</u> —
- There are significant uncertainties associated with damage intensity classification and potential biases in the windspeed estimation
- Damage based classifications produce 2 major biases in the database: under-classifications from random encounters with DI and the use of default EFO classifications for unknown
- The tornado climatology development needs to be based on engineering estimates of windspeeds, validated as much as possible
- A significant task of this project is to develop engineering- based, probabilistic damage-towindspeed relationships for the NIST/ASCE tornado windspeed maps.

EF DOD 4: Mean 97 mph

Hurricane Andrew: 155-165 mph

Project Schedule

Task		Yea	ar 1			Yea	nr 2			Ye	ar 3			Yea	nr 4	
	Oct.		\rightarrow		Oct.		\rightarrow	Sept.	Oct.		\rightarrow		Oct.		\rightarrow	Sept.
TUSK	2014			2015	2014			2015	2014			2015	2014			2015
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4

1. Databases	SPC, DAT, Storm Data - Data Analysis	Census, HAZUS, Data Cleansing, EFO Bias	NLCD, HUD (HAZUS)	
2. Tornado Event Data & Field Work	PLIV	Radar (limited), Damage , EF, PL & PW Surveys	Damage, EF, PL & PW Surveys	

S. Tornado Windfield TORMIS (TORRISK) minimal update Additional updates, Rmax, Finalize Parameters
--

4 Damage to Windshood	Single family residential buildings	Additional Damage Indicators	Vali-	
4. Damage to Windspeed	(preliminary)	Additional Damage Indicators	dation	

5. Regionalization	Initial Testing	Preliminary Regions	Final Regions
--------------------	-----------------	---------------------	------------------

6. Tornado Hazard Simulations & Spatial Risk	Joplin, Initial Sensitivity Analysis	Initial Regional Windspeeds	Preliminary Regions & Map Metrics	Final Hazard Metrics	

7. Maps				ontours & Testing	Review Preliminary Maps	Final Maps	
---------	--	--	--	----------------------	----------------------------	------------	--

	i				
8. Reports, Papers, Publications	Stakeholders Meeting	Conference & Journal Submittals	Conferences & Journal Publications	Conferences & Journal Publications	Final Report

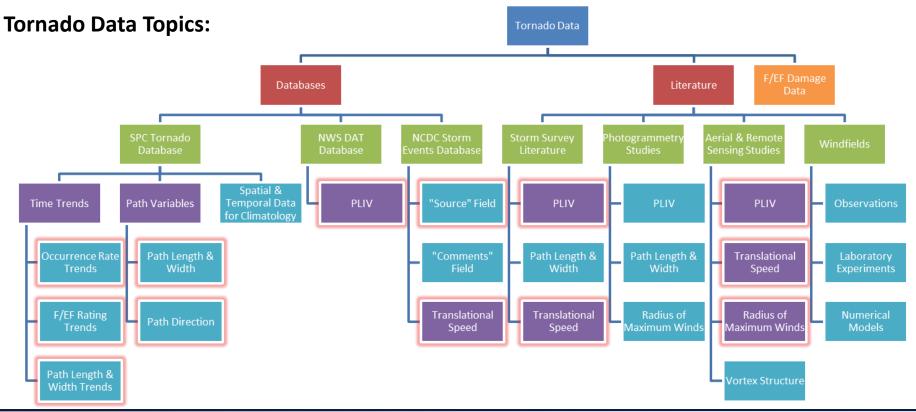
NOTE: Year 3-4 Scope not finalized

Outline

1. Tornado Data

expanding the realm of POSSIBILITY

- 2. Tornado Windfield Model
- 3. Year One Tornado Windspeed Sensitivity Analysis
- 4. Preliminary Probabilistic Analysis of F/EF Windspeeds
- Preliminary Quantification of Population Bias in Tornado Data
- 6. Tornado Climatology Regionalization Progress
- 7. Summary

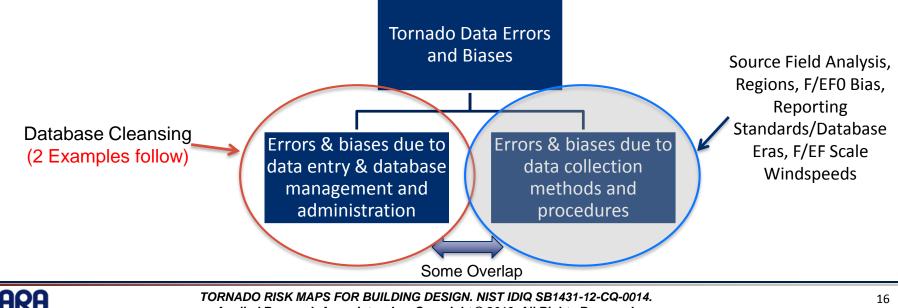

1. Tornado Data Overview

Tornado Data:

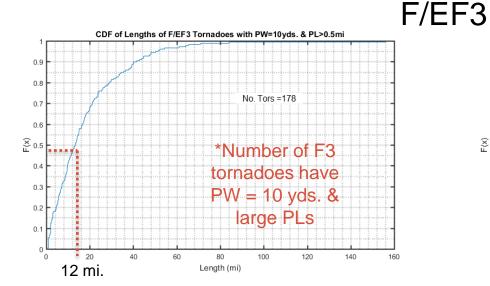
ara

expanding the realm of **POSSIBILITY**[®]

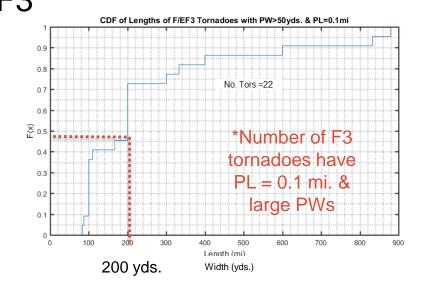
- Used to determine the tornado climatology and contains the inputs that drive the model
 - Source of information regarding the key parameters of path length, path width, intensity rating, number of reports, and location
- Has many issues including spatial and temporal biases, errors, and uncertainties
 - Cannot simply use the raw data
 - Must be aware of any data issues and adjust the data that we use in our models accordingly

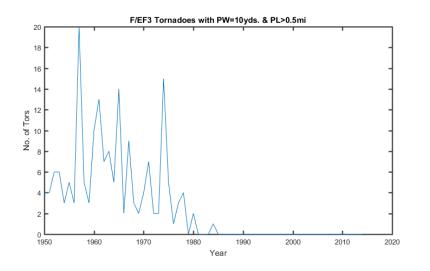


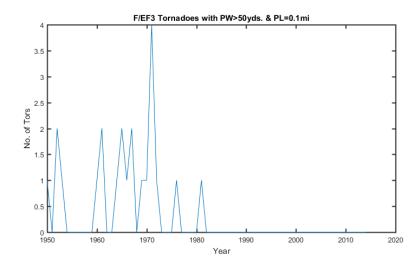
Database Cleansing


- Identify and understand errors and biases within the SPC database that are due to data entry and database maintenance
 - E.g. discrepancies, zero values, missing values, default values etc. •

expanding the realm of POSSIBILITY


- Model and correct for these errors with approaches consistent with available level of effort
- Approach can be considered to include both component and system level analysis/modeling

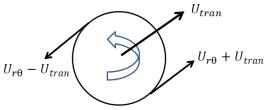



Unrealistically Small PW & PL : F3 Intensity

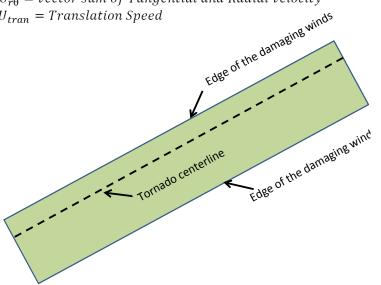
expanding the realm of POSSIBILITY®

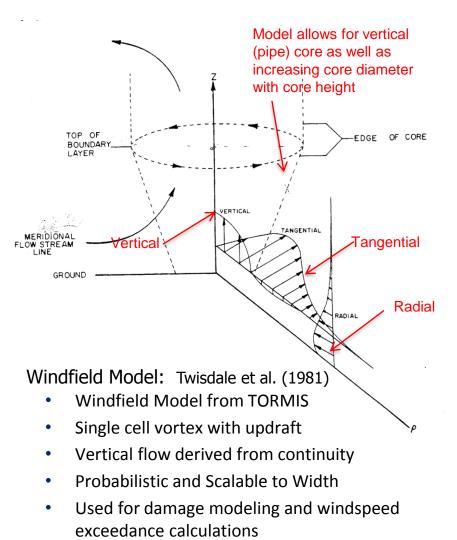
Table of F4-F5 Default PL & PW Corrections

Dete	Location		Rating SPC			Storm Events Database		Storm Data Pub.		Grazulis		ARA Updated		
Date			PW	PL	Area	PW	PL	PW	PL	PW	PL	PW	PL	Area
3/21/1952	Cross, Co., AR	4	880	0.1	0.05	880	0	NA	NA			880	TBD	NA
3/21/1952	Lonoke, AR	4	10	7.6	0.04	417*		NA	NA	800	70	417	7.6	1.80
5/1/1953			100	0.1	0.01	100	0	NA	NA	200	10	100	10	0.57
6/27/1953	Adair Co., IA		100	0.1	0.01	100	0	NA	NA	200	10	100	10	0.57
5/10/1953	Wayne, IA	4	10	6.4	0.04	33	6.4	NA	NA	200	8	200	6.4	0.73
5/10/1953	Hancock, Cerro Gordo, IA	4	10	26.6	0.15			NA	NA	800	28	800	26.6	12.09
5/1/1954	Pottawatomie, Lincoln, Creek, OK	4	10	59.2	0.34	33	59.2	NA	NA	800	30	800	59.2	26.91
6/27/1955	Scottsbluff, Morrill, NE	4	10	26	0.15	33	26	NA	NA	400	11	400	26	5.91
7/7/1955	Lincoln/Lyon, MN	4	10	30	0.17	33	30	NA	NA	200	20	200	30	3.41
1/22/1957	Sequoyah, OK	4	880	0.1	0.05	880	0	NA	NA	50	5	880	5	2.50
12/19/1957	Columbia, Ouachita, AR	4	10	17.7	0.10	33	17.7	NA	NA	300	15	300	17.7	3.02
4/15/1958	Polk, Co., FL	4	300	0.1	0.02	300	0	NA	NA	300	5	300	5	0.85
5/4/1960	Pottawatomie, OK	4	10	8	0.05	33	8	?	?	400	6	400	8	1.82
5/5/1960	Sequoyah, OK	4	10	5.4	0.03	33	5.4	?	?	200	5	200	5.4	0.61
5/19/1960	KS	4	10	20.6	0.00	33	20.6	.5-3 mi**				TBD	20.6	NA
5/30/1961	NE	4	10	48.1	0.27	33	48.1	narrow	40***	400	45	400	48.1	10.93
6/29/1961	MT	4	10	15.9	0.09	33	15.9		15			TBD	15.9	NA
5/5/1964	Greeley, Boone, NE	4	10	51.2	0.29	33	51.2	narrow	60			TBD	51.2	NA
4/11/1965	St. Joseph, Elkhart, IN	4	10	21.2	0.12	33	21.2			400	22	400	21.2	4.82
4/11/1965	Branch, Hillsdale, Lenawee, Monroe, MI	4	10	80.5	0.46	1760*****	80.5	.5-1mi	70			1760	80.5	80.50
4/11/1965	Blackford, Wells, Adams, IN; Mercer, Van wert, OH	4	10	52.5	0.30	33	52.5			600	55	600	52.5	17.90
5/8/1965	Howard, NE	4	10	78.9	0.45	33	78.9	narrow	80	400	90	400	78.9	17.93
5/8/1965	Hall, Boone, Antelope, NE	4	10	125.7	0.71	33	125.7	narrow	120	400	85	400	125.7	28.57
6/10/1967	Blaine Co., OK	4	10	0.1	0.00	33	0			100	5	100	5	0.28
2/21/1971	Warren, Yazoo, Holmes, MS	4	10	65.2	0.37	33	65.2		69	800	70	800	65.2	29.64
4/19/1972	Carter, Murray, Garvin, OK	4	10	28.2	0.16	33	28.2	50	20-25	50	27	50	28.2	0.80
4/3/1974	Anderson, Franklin, Scott Co., KY	4	10	79.4	0.45	33	80			800	36	800	36	16.36
4/3/1974	Perry, Crawford, Harrison, Washington, Clark, Scott Co., IN	5	10	68	0.39	33	68	700	67	1000	62	700	68	27.05
4/3/1974	Hancock, Rush, Henry, IN	4	10	18.9	0.11	33	18.9	1000	21	800	20	1000	18.9	10.74
4/3/1974	Jeffereson, Oldham, KY	4	10	18.5	0.11	33	18.5			200	21	200	18.5	2.10
4/3/1974	Hardin, Nelson, Spencer, KY	4	10	37.9	0.22	33	37.9			400	42	400	37.9	8.61
4/3/1974	Green, Taylor, KY	4	10	20.2	0.11	33	20.2			800	29	800	20.2	9.18
4/3/1974	Cumberland, Clinton, Wayne, KY	4	10	38.4	0.22	33	38.4	440-1760	35	800	30	800	38.4	17.45
4/3/1974	Garrard, Madison, Clark, KY	4	10	31.9	0.18	33	31.9	133-400	22	300	35	300	31.9	5.44
4/3/1974	Wayne, McCreary, KY	4	10	16.1	0.09	33	16.1			500	26	500	16.1	4.57
6/18/1975	Custer, NE	4	10	15.2	0.09	33	15.2	100-500			15	300	15.2	2.59
6/3/1980	Allegheny, Westmoreland, Armstrong, PA	4	10	11.8	0.07	33	11.8		14		14	TBD	11.8	NA
4/27/1984	Waukesha, WI	4	10	6.5	0.04	10	6.5	100	6.5	100	6.5	100	6.5	0.37
= // 1931	Total (not including TBD tors)	6.04	10	0.0		not including		0.0			356.62			
Mean (not including TBD tors)									not including	,				10.81
		RISK	INDS						ر ر	, , , , , , , , , , , , , , , , , , ,				10.01



TORNADO RISK MAPS FOR BUILDING DESIGN. NIST IDIQ SB1431-12-CQ-0014. 5,799% Increase in Total Inference arch Associates, Inc. Copyright © 2016. All Rights Reserved.

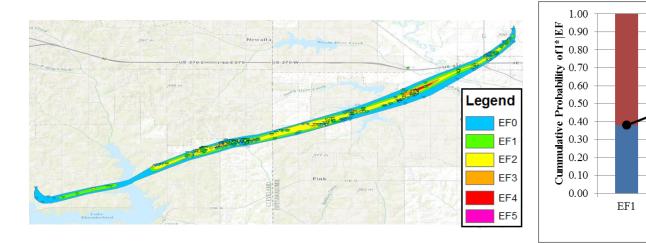

2. Tornado Windfield Model


Three dimensional windfield with radial and heightwise variation.

expanding the realm of **POSSIBILITY**[®]

 $U_{r\theta}$ = vector sum of Tangential and Radial velocity $U_{tran} = Translation Speed$

ARA


Update to Tornado Path Length Intensity Variation Model

- A tornado's intensity varies throughout its lifecycle, consisting of a formation stage, mature stage, and dissipation state
- This path length intensity variation (PLIV) is a critical input in tornado windspeed hazard analysis

Year One:

expanding the realm of POSSIBILITY®

- Collected and analyzed PLIV data to update our model for the creation of the tornado risk maps for building design
- There are a limited number of observations of PLIV for the entire tornado lifecycle -Hence, our year 1 effort focused on damage based PLIV data Example Results:

EF2

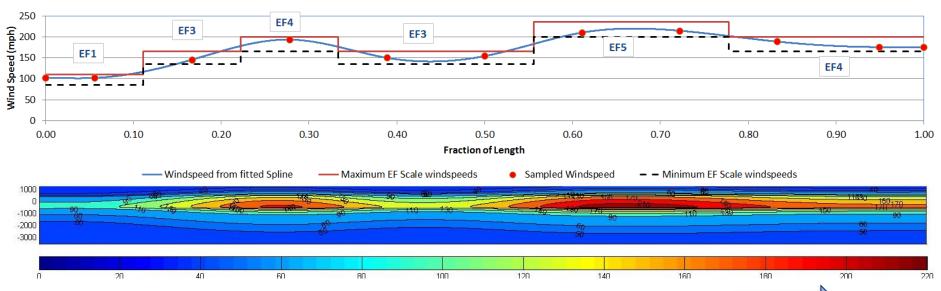
EF3

Maximum Tornado Rating

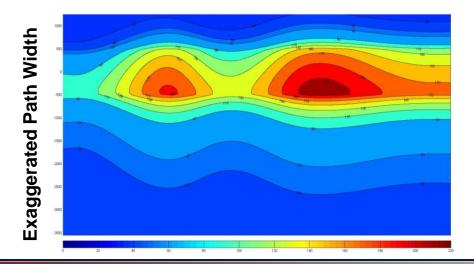
EF4

EF5

TORNADO RISK MAPS FOR BUILDING DESIGN. NIST IDIQ SB1431-12-CQ-0014. Applied Research Associates, Inc. Copyright © 2016. All Rights Reserved. ■I5* ■I4*


■I3*

I2*


■I1*

I0*

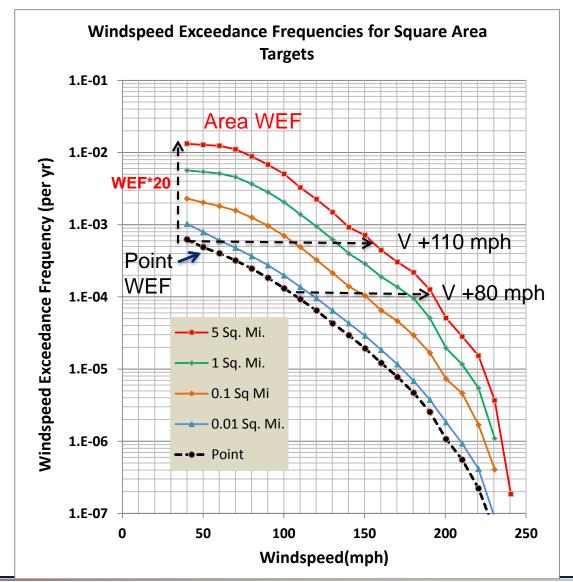
Simulated Wind Swath using PLIV

Maximum Horizontal Windspeed (mph)

expanding the realm of **POSSIBILITY**®

ARA

Direction of Tornado


- Spline fitting of sampled windspeed at each EF-scale segment.
- Sampled windspeeds are assigned at the midpoint of each segment.

3. Windspeed Exceedance Frequencies(WEF)

 Windspeed Exceedance
 Frequency plot quantifies the tornado windspeed hazard risk for a site

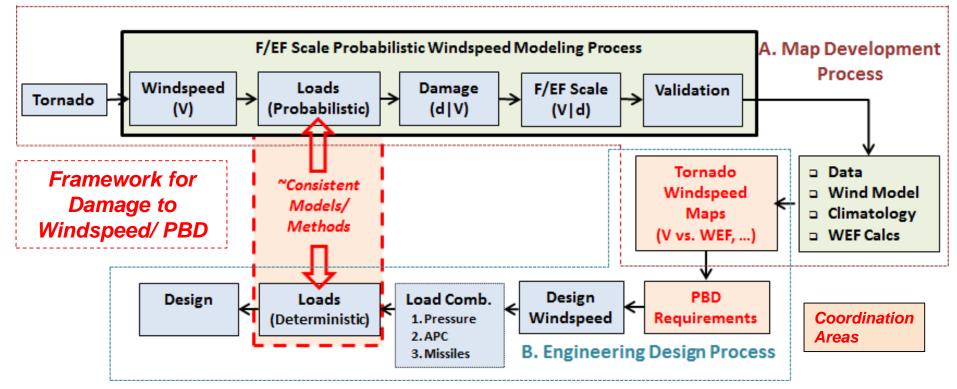
expanding the realm of **POSSIBILITY**[®]

- Spatial Size of Target is a significant effect due to small path widths of typical tornadoes
- Due to small areas within tornadoes with the highest winds, the greatest WEF sensitivity occurs at high windspeeds.
- These curves are Year One Joplin hazard curves bases on EF scale windspeeds, capped at 234mph for these examples
- Used EF era path lengths and widths

200 MPH WEF Sensitivity Results (Year One)

Crown	Calc	Model/Parameter	200 mph Windspeed Ex. Freq.				Ratio		Range	
Group	Calc	Wodel/Parameter	Low	Base	High	Low	Base	High	H/Min	
	1	Random Unc. in Mean Occ Rate				0.96	1.00	1.04	1.08	Analytically Determined
Occurrence	2	Intra-Annual (Seasonal) Variability	Est.	: Occ, EF D	oist, L,W	0.45	1.00	2.70	6.00	Relevant only to short term operational risk
	3	Inter-Annual (Year to Year) Randomness, Polya				0.47	1.00	1.67	3.55	Relevance depends on structure lifetime
Path	4	Path Length and Width Models	1.05E-06	1.22E-06	1.50E-06	0.87	1.00	1.23	1.43	
	5	PLIV	1.30E-06	1.22E-06	1.63E-06	1.07	1.00	1.34	1.34	
	6	RMW	6.08E-07	1.22E-06	1.92E-06	0.50	1.00	1.58	3.15	
Windfield	7	Translational Speed	1.10E-06	1.22E-06	1.68E-06	0.91	1.00	1.38	1.52	
	8	Radial Inflow	9.72E-07	1.22E-06	1.58E-06	0.80	1.00	1.30	1.63	
Damage Scale	9	F/EF Scale Distribution	7.53E-07	1.22E-06	3.90E-06	0.62	1.00	3.21	5.18	Under-estimated
and Damage	10	Windspeed Given Damage	2.44E-06	1.22E-06	1.28E-05	2.01	1.00	10.54	10.54	
to Windspeed	11	Dist. Of Windspeed Given Damage	6.79E-07	1.22E-06	1.61E-06	0.56	1.00	1.33	2.37	
		Min				0.45	1.00	1.04	1.08	
	Median					0.80	1.00	1.38	2.37	
Statistics		Avg				0.84	1.00	2.48	3.44	
Statistics		Max				2.01	1.00	10.54	10.54	
	Pro	oduct, Range of Product				0.05	1.00	987	20822	
	Sq Rt Pr	od, Range of Sq Rt of Product				0.22	1	31	144	

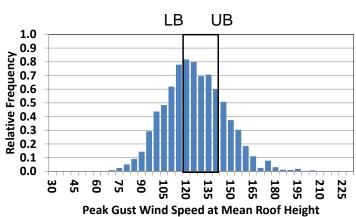
Most Sensitive: Windspeed given damage, F/EF Dist, Windfield, Rmax,


Inter-annual variability (within year risk)

expanding the realm of POSSIBILITY®

4. Probabilistic Analysis of F/EF Windspeeds

- Framework includes several coordination points: reference windspeed/profile, loads/load combinations, vertical winds and coefficients, PBD range of WEF, ...
- Our plan is to produce tornado windspeed maps that can be used with to achieve PBD objectives with some confidence that the designs will perform to the developed windspeeds AND associated loads
- Probabilistic Modeling of F/EF Damage to develop a windspeed-based climatology is a key element of the project. (Key damage indicators only)

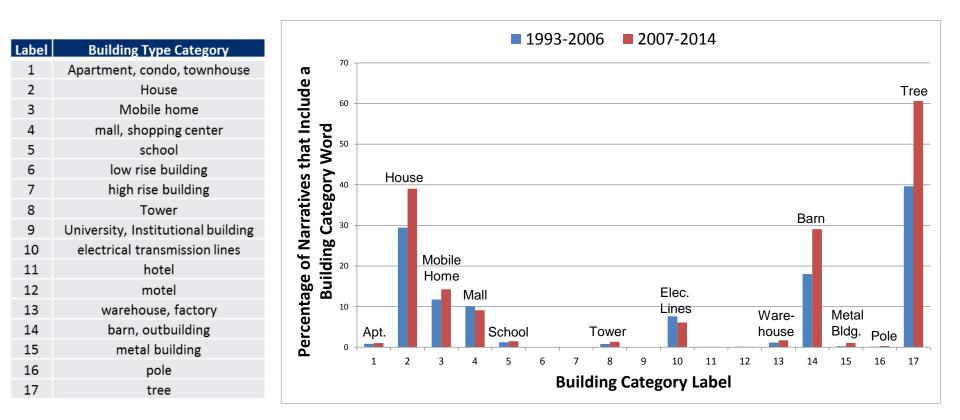


expanding the realm of POSSIBILITY®

Probabilistic Modeling of DoD Windspeeds

- Develop probabilistic distributions of wind speeds for the most common Dl's.
- Tornado damage model is based on the HAZUS methodology, and has been initiated under IR&D funding

DOD*	Damage description	Exp**	LB	UB			
1	Threshold of visible damage	65	53	80			
2	Loss of roof covering material (<20%), gutters and/or						
	awning; loss of vinyl or metal siding	79	63	97	1.0		
3	Broken glass in doors and windows	96	79	114	0.0		
4	Uplift of roof deck and loss of significant roof covering material (>20%); collapse of chimney; garage doors				6.9 0.8 0.7 0.6 0.5		
	collapse inward or outward; failure of porch or carport	97	81	116	b 0.6		
5	Entire house shifts off foundation	121	103	141	ዾ፝ 0.5		
6	Large sections of roof structure removed; most walls				8.0 F 8.0 F 7.0 F	_	
	remain standing	122	104	142			
7	Exterior walls collapsed	132	113	153	e 0.2		
8	Most walls collapsed in bottom floor, except small				- 0.1 0.0		
	interior rooms	152	127	178	0.0	45	60
9	All walls collapsed	170	142	198		οσ	C
10	Destruction of engineered and/or well constructed						Pea
	residence: slab swept clean	200	165	220			

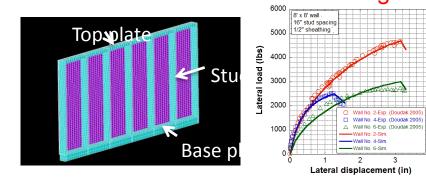

* DOD is degree of damage **Wind Speed values are in mph

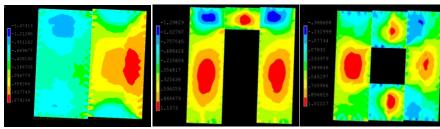
SF House Damage Modeling in Year 2

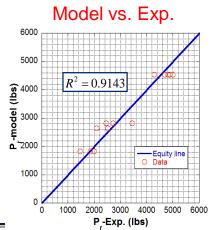
expanding the realm of POSSIBILITY[®]

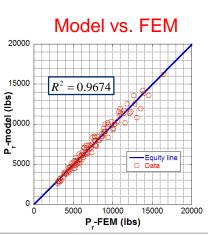
Most Common Damage Indicators Used to Rate Tornadoes: F and EF Scale

The most commonly used DI's to rate tornado damage intensity are similar for both the F-Scale era and the EF-Scale era

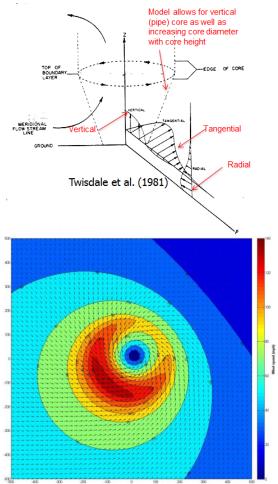

expanding the realm of **POSSIBILITY**[®]

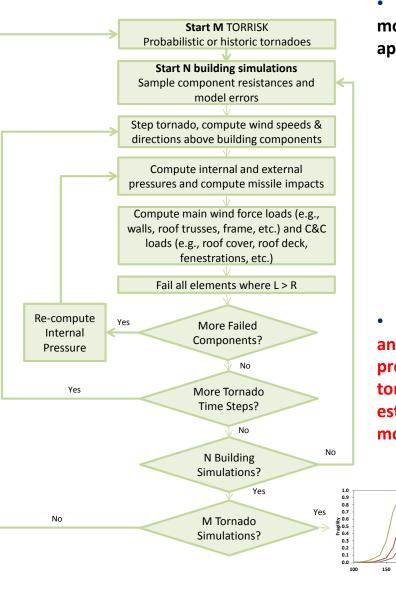

FE Modeling of Wood Frame Walls


 In year two, single family residential structures are being modeled for damage to windspeed relationships. ARA's HAZUS and HURLOSS wood frame models are being used as a starting point.


expanding the realm of POSSIBILITY[®]

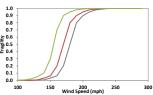
- FE models of wood stud wall failure are being developed for resistance models in ARA's TORDAM tool. In-plane shear and out-of-plane bending failure mechanisms are currently being studied.
- The models have been validated against experimental studies from literature
- The experimentally validated models were used to perform sensitivity analysis of racking and bending strength of wood walls
- Parametric models yielded very good correlation with FEM produced data and the data from the literature





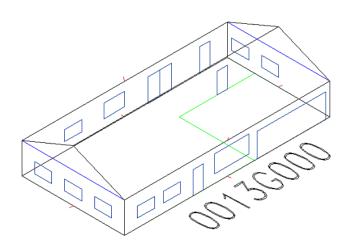
TORDAM 3-D

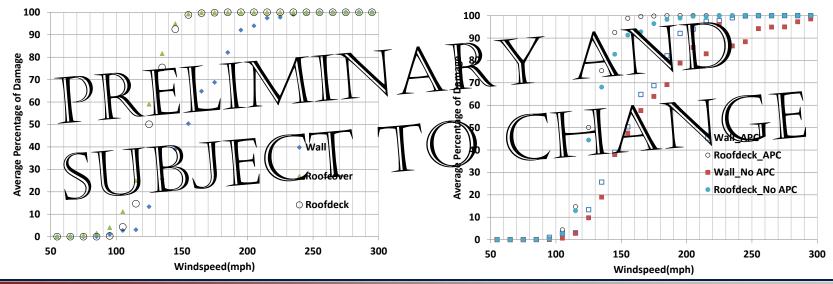
Simulations


Tornado Windfield Model

- The 3D explicit model time-stepping approach captures:
 - Progressive failures
 - APC Loads
 - Tornado velocity profiles
 - Vertical winds
 - •Rotational winds and directional effects.
 - Tornado size vs building size

• Straight wind analysis methods do not provide for accurate tornado windspeed estimation or damage modeling

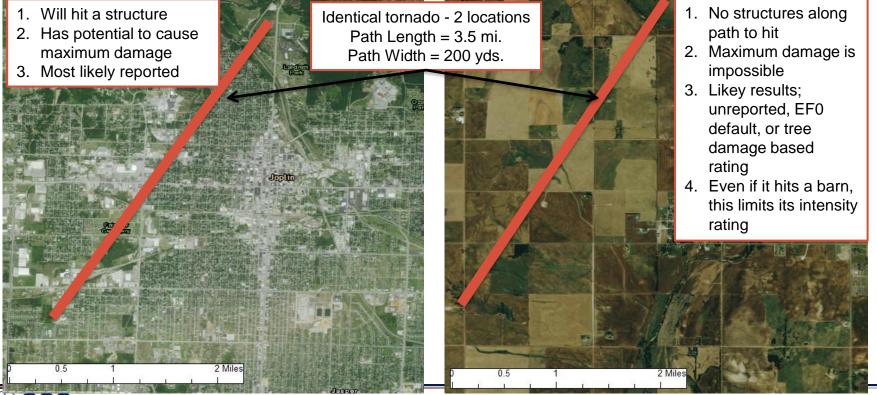



Example Fragilities for Weak 1 Story Gable

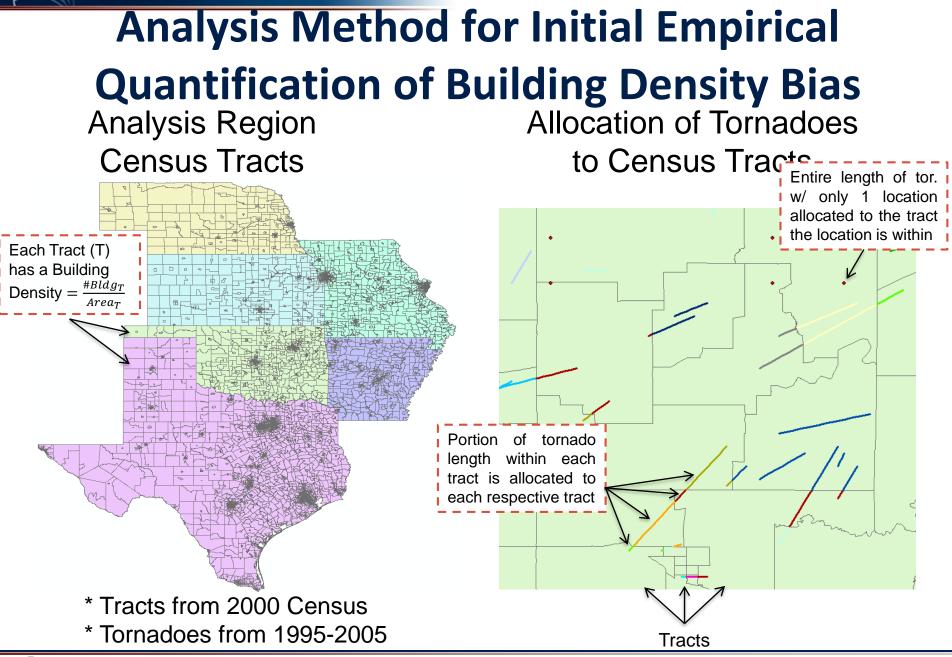
- Roof slope of 4/12, 60ft long and 30ft wide
- Mean roof height:11.5 ft

expanding the realm of **POSSIBILITY**[®]

- Roof to Wall connection: Toenail
- Wall to Foundation: Straight nail
- Roof deck to roof truss: 8d nail
- Roof cover: Asphalt (poor quality)
- Construction quality: Average
- TORDAM simulations: 1000 per EF scale, 5000 total
- Results are binned by peak winds at center of building
- APC load effects are noticeable; and significant for large buildings
- Initial results indicate large uncertainties in estimating tornado windspeeds and wind effects.

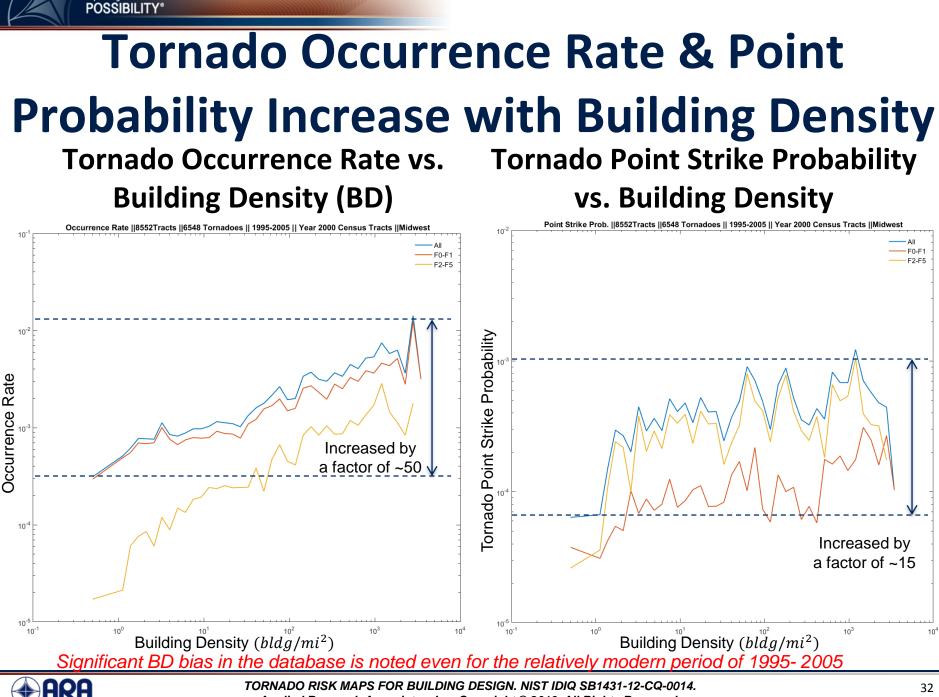


5. Population (Bldg. Den.) Bias in Tornado Data

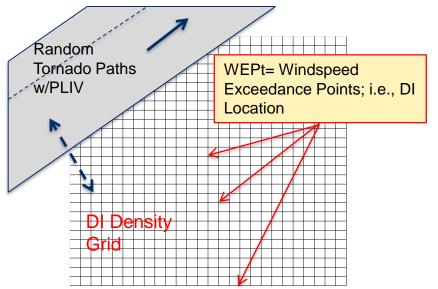

Tornadoes are classified by damage

expanding the realm of POSSIBILITY

- Tornadoes that produced no damage are not reported or are under-rated
- Our analysis approach is use a modeling approach with validation based on reported events vs building density
- Initial work underway using 2000 census and building information data from ARA's work on HAZUS with SPC database



expanding the realm of POSSIBILITY

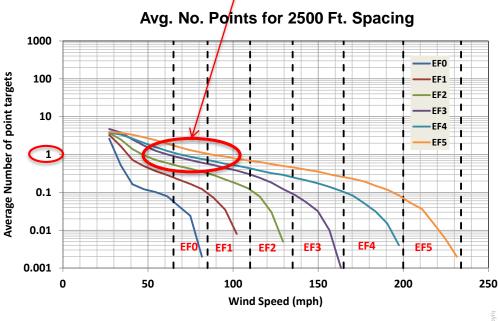

expanding the realm of

Applied Research Associates, Inc. Copyright © 2016. All Rights Reserved.

Modeling Approach for Quantification of Pop. Density Bias

1. Tornado- BD Simulations

expanding the realm of POSSIBILITY®

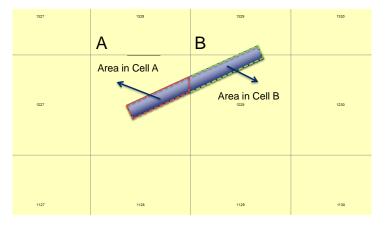


3. Results for 500 ft. Spacing

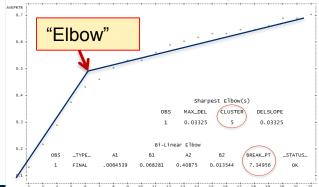
- Many EF0 will produce no damage
- Some EF1 will produce no damage
- Higher intensities have a good chance of being under-classified by 1-2 EF scales.

2. Results for 2500 ft. BD Spacing

 Low EF Damage will Dominate the Ratings or NO DAMAGE will occur.


6. Regionalization Analysis Progress

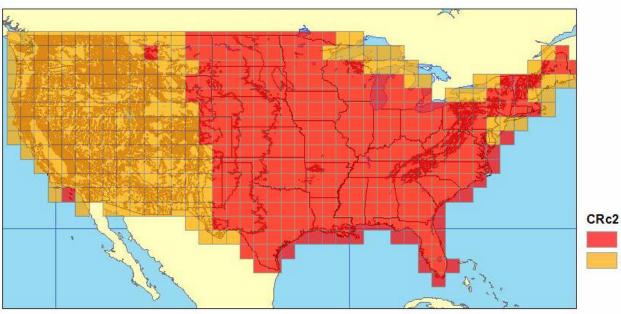
 Starting from ARA's Nuclear Power Plant work on site specific risks


expanding the realm of POSSIBILITY[®]

- Clustering process was semi-automated
- Can quickly produce plots that allow clustering results to be visualized
 - Ability to set the cell size used for regionalization
 - Sensitivity studies now practical and variable size cells
- Climatology metrics(inputs): Point Strike Prob., Occ. rates, Tor Direction, Tor Days per year, land/water fraction,....
- These metrics are computed for each cell and input to SAS Clustering algorithm (Exponential Maximum Likelihood clustering with stepwise discriminant analysis)

Tornados allocated to affected cells considering reported path length

Stepwise analysis "Elbow Plot" shows point of diminishing returns (additional clusters have less relative statistical significance).

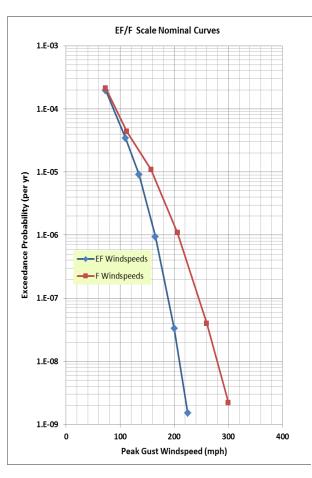

expanding the realm of POSSIBILITY*

Initial Regionalization Testing in Year Two

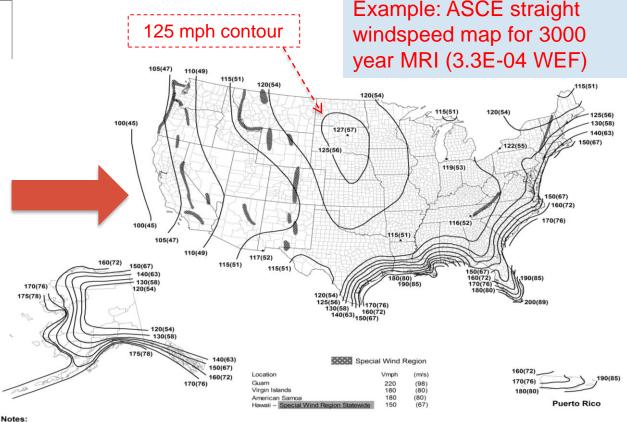
- Parametric Studies Include:
 - Cell Size (1°, 1.4°, 2°, and 3°)
 - Variable Transformations (Log, equivalent normal,....)
 - Multiple combinations of climatological variables
 - Testing does not include final data cleansing
- Example Clustering Results (1.4 °Cells)
 - Variables and Transformations :

Run	TDpY_a	DirAv	OccM_a	OccS_a	PP_a	LndFr	ELMean	ELSD	Lat	Long
4C	Norm.		Ln	Ln	Ln	Norm.	Unadj.	Unadj.	Unadj.	Unadj.

Bi-Linear Break Point: 8.17



Variables:
TDpY : Tornado Days per Year
DirAv : Average Tornado Path Direction
OccM: Occurrence Rate F2-F3
OccS: Occurrence Rate F4-F5
PP : Point Strike Probability
LndFr: Land Fraction
ELMean: Mean Elevation
ELSD : Standard Deviation of Elevation
Lat: Latitude
Long: Longitude
"_a": Allocated path length
L


Transformed Variables Unadj.: Unadjusted Values Norm.: Normalized Values Ln: Natural Log of Values

Development of Final Maps from Modeling Results

expanding the realm of **POSSIBILITY**[®]

1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s) at 33 ft (10m) above ground for Exposure C category.

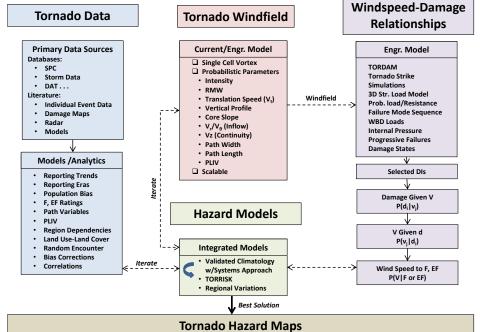
2. Linear interpolation is permitted between contours. Point values are provided to aid with interpolation.

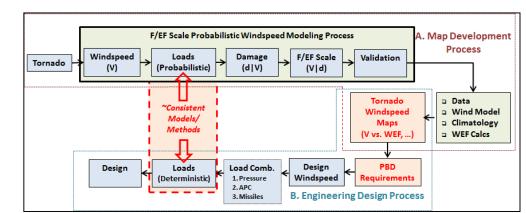
3. Islands, coastal areas, and land boundaries outside the last contour shall use the last wind speed contour

4. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

5. Wind speeds correspond to approximately a 1.6% probability of exceedance in 50 years (Annual Exceedance Probability = 0.00033, MRI = 3000 Years).

6. Location-specific basic wind speeds shall be permitted to be determined using www.atcouncil.org/windspeed


Integrated System Framework


7. Project Summary

 Tornado hazard analysis is a complicated, iterative process, with many components.

expanding the realm of **POSSIBILITY**[®]

- There are many biases/ limitations of the raw, damage-based tornado datasets.
- Our approach includes both component and "system" analysis methods.
- A consistent 3D modeling approach is being used for tornado hazard and damage-to-windspeed calculations.
- New field work is needed to support and validate tornado hazard and damage to windspeed modeling.

Windspeed Map- PBD Framework

TORNADO RISK MAPS FOR BUILDING DESIGN. NIST IDIQ SB1431-12-CQ-0014. Applied Research Associates, Inc. Copyright © 2016. All Rights Reserved.

Standards, Code, and Guidance Development

Marc Levitan, Acting Director National Windstorm Impact Reduction Program NIST

Update on Standards, Code, and Guidance Development

Work in progress Completed

- Existing Standards
 - ASCE/SEI 7-22, Minimum Design Loads for Buildings and Structures
 - ICC 500-2019, Standard for Design and Construction of Storm Shelters
- New Standards
 - ASCE/SEI Standard for Estimation of Wind Speeds in Tornadoes
 - NFPA 1616, Standard for Mass Evacuation and Sheltering

Building Codes

- 2018 International Building Code (IBC)
- 2018 International Existing Building Code (IEBC)

Guidelines

- FEMA P-431, Tornado Protection: Selection Refuge Areas in Buildings
- FEMA P-320, Taking Shelter from the Storm: Building a Safe Room for
- Your Home or Small Business, 4th ed. (December 2014)
- FEMA P-361, Safe Rooms for Tornadoes and Hurricanes: Guidance for Community and Residential Safe Rooms, 3rd ed. (March 2015)
- ICC 500-2014 Commentary on the Standard for Design and Construction of Storm Shelters (January 2016)

Context – Building Codes and Standards

National model building codes, standards, and practices seek to achieve life safety for the hazards considered in design.

Tornado hazards are not currently considered in the design of buildings, except for safety– related structures in nuclear power plants, storm shelters, and safe rooms.

Development of Performance-Based Standard for Tornado-Resistant Design

Recommendation 5 (ASCE): NIST recommends that nationally accepted performance-based standards for the tornado-resistant design of buildings and infrastructure be developed in model codes and adopted in local regulations to ensure the resiliency of communities to tornado hazards. The standards should encompass tornado hazard characterization, performance objectives, and evaluation tools. The standards shall require that critical buildings and infrastructure such as hospitals and emergency operations centers are designed so as to remain operational in the event of a tornado.

Target Standard : ASCE 7-22

Implementation of Performance-Based Design (PBD)

Continued working with ASCE Technical Committee on PBD for Extreme Winds (ad-hoc)

- Committee is creating a PBD framework for extreme wind hazards, including tornadoes, intended for inclusion in ASCE 7-22.
- Developing performance objectives and building performance levels for different wind hazards and risk categories of buildings
 - hurricanes, tornadoes, other windstorms
 - structural, cladding, and other building systems

Implementation of Performance-Based Design (cont'd)

Additional requirements to implement PBD for tornadoes

- New tornado hazard maps (R3)
- New tornado wind load design methods (R6)
 - variation of wind speed with height and terrain
 - pressure coefficients
 - atmospheric pressure change (APC)
 - missiles

To create more accurate tornado hazard maps in the future

Better tornado wind / climate data needed (R4 / R2)

Improving Tornado Wind Speed & Climate Data

Recommendation 4 (NWS): NIST recommends that new damage indicators (DIs) be developed for the Enhanced Fujita tornado intensity scale to better distinguish between the most intense tornado events. Methodologies used in the development of new DIs and associated degrees of damage (DODs) should be, to the extent possible, scientific in nature and quantifiable. As new information becomes available, a committee comprised of public and private entities should be formed with the ability to propose, accept, and implement changes to the EF Scale. The improved EF Scale should be adopted by NWS.

Recommendation 2 (NWS): NIST recommends that information gathered and generated from tornado events (such as the Joplin tornado) should be stored in publicly available and easily accessible databases to aid in the improvement of tornado hazard characterization.

Background – Estimating Wind Speed from Damage using the EF Scale

 Degree of Damage (DoD) assigned to a Damage Indicator (DI) (e.g. house, school)

 Estimated wind speed associated with each DoD 2. ONE-AND TWO-FAMILY RESIDENCES (FR12) (1000 – 5000 sq. ft.)

Typical Construction

- · Asphalt shingles, tile, slate or metal roof covering
- · Flat, gable, hip, mansard or mono-sloped roof or combinations thereof
- Plywood/OSB or wood plank roof deck
- · Prefabricated wood trusses or wood joist and rafter construction
- Brick veneer, wood panels, stucco, EIFS, vinyl or metal siding
- Wood or metal stud walls, concrete blocks or insulating-concrete panels
- Attached single or double garage

DOD*	Damage description	EXP	LB	UB	
1	Threshold of visible damage	65	53	80	
2	Loss of roof covering material (<20%), gutters and/or awning; loss of vinyl or metal siding	79	63	97	
3	Broken glass in doors and windows	96	79	114	
4	Uplift of roof deck and loss of significant roof covering material (>20%); collapse of chimney; garage doors				
	collapse inward; failure of porch or carport	97	81	116	
5	Entire house shifts off foundation	121	103	141	
6	Large sections of roof structure removed; most walls				
	remain standing	122	104	142	
7	Exterior walls collapsed	132	113	153	
8	Most walls collapsed, except small interior rooms	152	127	178	
9	All walls	170	142	198	
10	Destruction of engineered and/or well constructed				
	residence; slab swept clean	200	165	220	
* DOD	* DOD is degree of damage				

* DOD is degree of damage

Source: NOAA. http://www.spc.noaa.gov/efscale/2.html

Background - Rating Tornadoes: The Enhanced Fujita (EF) Scale

- EF Number is then assigned to a tornado based on estimated wind speed
- Wind speed ranges associated with EF Numbers

EF Number	Wind Speed (mph)
0	65-85
1	86-110
2	111-135
3	136-165
4	166-200
5	200+

Typical damage state with EF-scale rating:

Used with permission.

EF5

ASCE Standard on Wind Speed Estimation in Tornadoes

- Standards committee co-chaired by NWS and NIST staff
 - 93 members
 - mainly meteorologists, wind engineers, structural engineers
- Scope of new standard includes wind speed estimation by
 - EF Scale
 - Radar and In-situ Measurements
 - Forensic Engineering
 - Treefall Patterns
 - Remote Sensing
- Scope also includes requirements for data and metadata
- Intended for adoption by NWS

ASCE Standard on Wind Speed Estimation in Tornadoes (cont'd)

EF Scale Improvements

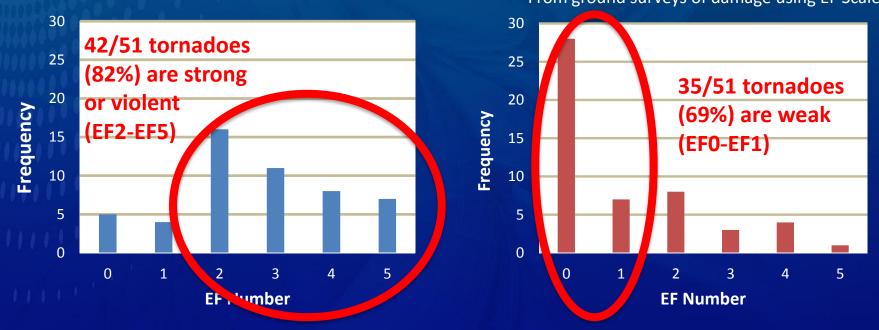
- Better guidance for existing DIs to provide more consistent wind speed estimates
- Development of new engineering-based DIs

Example- Jersey Barriers New DI based on wind tunnel tests

to determine speeds required for overturning

Source: NOAA

Copyright 2015: Greg Kopp/Western University. Used with Permission.


Key Limitation – EF Scale is damage based. The tornado has to hit something in order to get an estimated wind speed.

Comparison of Tornado Wind Speeds Estimated by Mobile Radar and Damage

Sample Size = 51 Tornadoes*

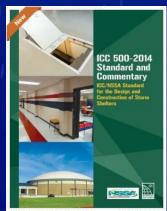
EF Numbers from Mobile Radar Measurements <u>Observations below 500 m AGL (above ground level)</u>

EF Numbers for the Same 51 Tornadoes Reported in NOAA OneTor Database From ground surveys of damage using EF Scale

Mobile radar indicates much stronger winds than implied by damage

*Data Source: A Mobile Radar Based Climatology of Supercell Tornado Structures and Dynamics, by Alexander, Curtis R., Ph.D., The University of Oklahoma, 2010.

Sheltering Strategies


Recommendation 8 (FEMA): NIST recommends the development and implementation of uniform national guidelines that enable communities to create safe and effective public sheltering strategies. The guidelines should address planning for siting, designing, installing, and operating public tornado shelters within the community.

Safe Rooms for Tornadoes and Hurricanes Guidance for Community and Residential Safe Rooms FEMA P-361, Third Ibline / March 2015

🎯 FEMA

Source: FEMA.

Euron the Storm Building a Safe Room for Your Home or Small Busine Induke Construction Plans FEMA P-320, Fourth Edition / Docember 2014

💱 FEMA

Source: FEMA.

Cover image © 2016, International Code Council. Reprinted with permission. www.iccsafe.org

- NIST developed significant new guidance material that was incorporated into two FEMA Safe Room publications (FEMA P-320, 4th ed., and FEMA P-361, 3rd ed)
- NIST led development of *Chapter 3:* Structural Design Criteria in the ICC 500 Commentary
- Proposed shelter safety requirements and guidance for new NFPA 1616 Standard for Mass Evacuation and Sheltering

NFPA 1616 Proposed Annex: Best Practices for Shelter Facility Selection

General

Minimum Recommendations for Selection of Existing Buildings Minimum Recommendations for Construction of New Sheltering Facilities Considerations for Shelter Exposure to the Hazard Event

Risk and Condition Assessments

Pre-event Risk Assessment During-event Risk Assessment During-event Condition Assessment Post-event Condition Assessment Additional Assessment and Selection Considerations

Tornado Hurricane Tsunami Snow and Winter Storms Flood Earthquake

Status

- Inclusion of changes to standard and proposed annex approved in Committee meeting on March 31, 2016
- Out for Letter Ballot now
- Anticipated publication of the standard is late 2016

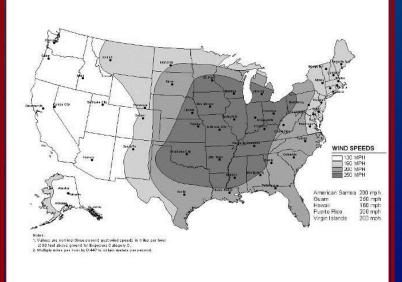
Code Changes – Shelters

Recommendation 7 (ICC): NIST recommends that: (a) a tornado shelter standard specific for existing buildings be developed and referenced in model building codes; and (b) tornado shelters be installed in new and existing multi–family residential buildings, mercantile buildings, schools and buildings with assembly occupancies located in tornado hazard areas identified in the performance–based standards required by Recommendation 5.

7(b): NIST-developed code changes were <u>approved</u> for the 2018 IBC and IEBC

- Developed in coordination with the Building Code Advisory Committee (BCAC) and FEMA
- Expand requirements for incorporation of ICC 500 storm shelters at both new and existing schools, including assembly spaces associated with schools

Code Changes, Shelters (cont'd)


• Parallel requirements for

- New buildings on existing school campuses (IBC)
- Additions to buildings on existing school campuses (IEBC)
- Require ICC 500 shelters large enough to protect the population of the school, provided the new construction is of sufficient size

Applies to

- Group E occupancies
- Indoor assembly spaces associated with the Group E occupancy, e.g., theaters, auditoriums, gymnasiums w/bleachers

New IBC/IEBC shelter requirements apply in the 250 mph tornado wind speed zone (dark grey)

©2014 ICC. Used with Permission.

Code Changes – Roof Aggregate

Recommendation 11 (ICC): NIST recommends that aggregate used as surfacing for roof coverings and aggregate, gravel, or stone used as ballast be prohibited on buildings of any height located in a tornado–prone region.

Code change proposal for 2018 IBC

- Developed in coordination with the BCAC, with input from FEMA
- Status: Pending

Guidance – Best Available Refuge Areas

Recommendation 9 (FEMA): NIST recommends that uniform guidelines be developed and implemented nationwide for conducting assessment of tornado risk to buildings and designating best available tornado refuge areas as an interim measure within buildings until permanent measures fully consistent with Recommendations 5 and 7 are implemented.

Working with FEMA to update

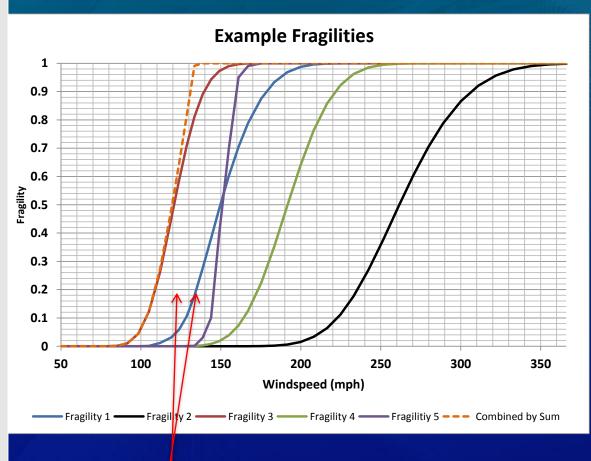
FEMA P-431 Tornado Protection: Selecting Refuge Area in Buildings

- Current version deals almost exclusively with schools
- The revised version will
 - have a new, engineering-based selection methodology
 - cover a much broader array of building occupancies and types
- Phase I of project completed 4/30/16

Selecting Refuge Areas in Buildings

FEMA P-431, Second Edition / October 2009

Source: FEMA.


Best Available Refuge Area Methodology

- Allow the evaluation of various building types within the same site or campus
- Provide a consistent manner of conducting the structural assessment
- Provide a validated approach for the structural assessment
- Leverage the latest available modeling and forensic research
- Utilize 13 Building Types (based on ASCE 41)
- Incorporate quantitative and qualitative factors that are evaluated for each candidate refuge area to support the Design Professional's final determination of relative ranking

Application of Fragility Functions

- Quantify Probability of Failure
- Phase I Refuge Area (RA) Fragilities
 - Collapse of wall and roof...
 - Frame and Missiles (future Phase)
- Fragilities for multiple failure modes are aggregated to produce the refuge area fragility
- The position and slope of the fragilities provide the fundamental engineering information to assess relative safety of candidate areas
- Use of fragilities facilitates engineering analysis of components and the MWFRS.
- Loads are based on ASCE 7 information and tornado modeling research

Slope indicates relative uncertainty; for example, drawing available, lack of redundancy,

Used with Permission.

© 2016 Applied Research Associates, Inc.

Phase I Project Scope – ARA

- Develop a engineering-based methodology analysis framework and validation approach to support a Design Professional's evaluation of a *Best Available Tornado Refuge Area*
- The Methodology encompasses 5 Building Types in Phase I:
 - 1. Reinforced Masonry (RM)
 - 2. Unreinforced Masonry (URM)
 - 3. Tilt-Up (PC1)
 - 4. Steel Frames (S1)
 - 5. Steel Frames with Masonry Infill (S5)
- Damage modeling validation for two building types
- Modeling of roof and wall system failures
- Investigation of methods to capture the engineering-based methodology into a "job-aid" to aid the Design Professional in selecting the Refuge Area

R13: Emergency Communications

Erica Kuligowski, *Leader* Wildland-Urban Interface Fire Group NIST

New Project: "Development of Guidance for Community-wide Public Alerts in Emergencies"

- 2-year project to: Develop guidance for communities on the creation and provision of public alerts – via outdoor siren (warning) systems and social media (including mobile alerts)
- The guidance document will...
 - Focus on alerting strategies for relevant hazard and threat scenarios in communities in the U.S.
 - Provide technical foundation for NFPA 1616 on alerting requirements
- Success: Development of a guidance document on alerting strategies that NFPA 1616 can use as a basis for annexes for the standard.

Elements of an Community-Wide Emergency Communication System – Alerts and Warnings

- Examples of technology (or channels):
 - Outdoor sirens
 - Television
 - Radio
 - NOAA Weather Radio
 - Internet (websites), email
 - Cell phone/mobile devices
 - Visual displays (e.g., airport, subway systems)

Social media (Facebook, Twitter)

- Examples of sources (or message providers)
 - Emergency managers/ local government
 - Weather-related federal agencies (e.g., NOAA/NWS)
 - Media
 - Federal/state governments
 - Community leaders
 - Business owners
 - Health care providers
 - Education
 - Transportation agencies

NIST Public Alerts Project Collaboration

• NFPA 1616 Technical Committee

- Annex K Emergency Communication: Public Alerts and Warnings
- Annex L Social Media Planning

• Fire Protection Research Foundation (FPRF) – Project Panel

- Department of Homeland Security (S&T)
- NOAA/National Weather Service
- U.S. Department of Veterans Affairs
- Local (and State) emergency management and response community
- Siren/alarm manufacturers
- Research community (social dimensions of disasters)
- NFPA 1616 Chair

Previous Collaboration: NIST, FPRF, and NFPA 72 (National Fire Alarm and Signaling Code)

Acknowledgements

The Science and Technology Directorate of the U.S. Department of Homeland Security sponsored the production of this material under Interagency Agreement HSHQDC-07-X-00723 with the National Institute of Standards and Technology (NIST)

Fire Protection Research Foundation's Technical Panel and Industry Project Sponsors

Public Alerts Project: Technical Approach

- Year 1 Interim guidance document outlining the usage, activation procedures and sounds/sounding patterns for community-wide public siren (warning) systems
 - 1. What are the current siren technologies and their capabilities/limitations in alerting?
 - 2. How do people, of all ages, abilities, and other important demographics, respond to alerting sounds and patterns?
 - 3. What are the current methods that leading communities have adopted to standardize neighboring siren systems?

Public Alerts Project: Technical Approach, cont.

- Year 2 Guidance document outlining alerting strategies
 - 1. What are the current social media available to alert the public in emergencies, including their capabilities/limitations in alerting; how are they being used?
 - 2. What research exists related to public response to emergency-based social media alerts, including Facebook, Twitter, and Instagram?
 - 3. Develop guidance on the most effective usage of mobile devices and social media tools to alert the public of an emergency.

Progress to Date...

- Reviewed 30 different outdoor siren (warning) systems available for community use from 5 different siren manufacturers
- Reviewed FEMA Guidance for sirens, including:
 - FEMA CPG 1_17 (1980)
 - FEMA Outdoor Warning Systems, Technical Bulletin 2.0 (2006)
- Purpose understand the capabilities of current systems and the ways in which they differ
- Collected and reviewed current siren policies, including:
 - -North Central Texas
 - —Association of Minnesota Emergency Managers
 - Southwest Missouri Emergency Support Organization

Next Steps

- Summer (SURF) student begins May 23, to complete the following:
 - Review literature on how people, of all ages, abilities, and other important demographics, respond to alerting sounds and patterns
 - -Collect additional siren policies developed by communities
- Plan and organize a workshop in Summer 2016
 - Invite community leadership (EMs/officials) involved in regional siren policy development
 - What are the current siren policies in U.S. Midwest communities?
 - What are the benefits/limitations of standardized siren procedures (national, regional)? How can NIST play a role?
- Provide biannual updates to FPRF project panel and NFPA 1616

R16: NOAA Grid-Based Threat Communication: Forecasting a Continuum of Environmental Threats (FACETS)

Dave Jorgensen, *Research Meteorologist and Chief* National Severe Storms Laboratory/R&D Division NOAA

Progress Update

Recommendation 16 (NOAA): *NIST recommends that technology be developed to provide tornado threat information to emergency managers, policy officials, and the media on a spatially resolved real-time basis to supplement the currently deployed official binary warn/no warn system.*

NOAA's National Severe Storms Lab (NSSL) is actively exploring and developing a new grid-based threat communication paradigm, called

Forecasting a Continuum of Environmental Threats (FACETs)

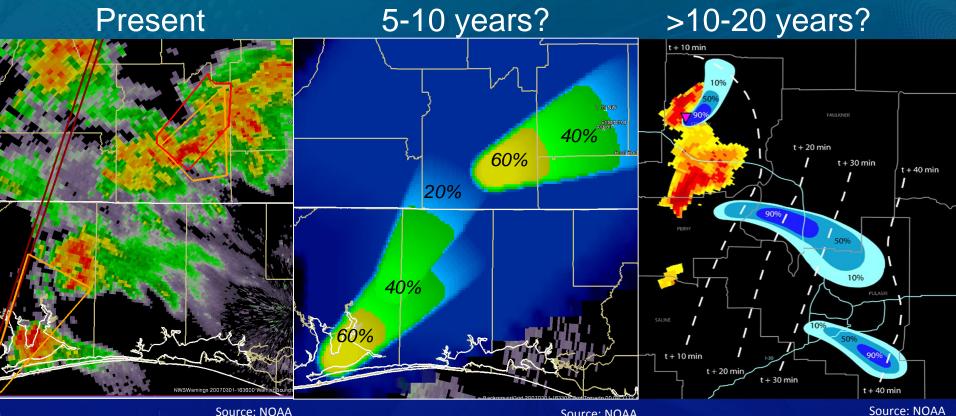
- FACETs is a new, all-hazard watch/warning paradigm (grid-based, probabilistic threats) redesigned with social/behavioral science infused
- Multi-year exploration/development effort. FY 15 tasks completed:
 - Completed first iteration of probabilistic hazard grids and tools
 - Limited tests with NWS forecasters in Hazardous Weather Testbed
 - 12 years of NWS radar data analyzed and cleaned up in preparation for statistical based methods for warnings.
- See http://www.nssl.noaa.gov/projects/facets/

The Current Tornado Warning System

- Warning polygons are messy!
- Inherently "binary" (on/off; in/out)
- Huge false alarm rate.
- 1950s Teletype-era paradigm.

Source: NOAA

Source: NOAA



FACETs Is...

 Optimized for user-specific decision-making through comprehensive integration of social/behavioral/economic sciences.

FACETS Tornado Warning Timeline (est)

Source: NOAA

Probabilistic guidance using numerical model ensembles and updated continuously

Probabilistic guidance from climatology and human "estimation" updated ~15 min

Source: NOAA

Polygons or county based warnings updated ~15 min

Expected Benefits

- A fully-integrated continuum of weather threat information;
- Reduction in size of "warned" areas;
- <u>Considerable</u> new opportunities for America's Weather Industry;
- More useful, actionable, and recipientspecific information.
- A Weather-Ready Nation.

Source: NOAA

Summary

- FACETs: An over-arching vision to modernize NOAA's hazardous weather forecasting paradigm.
 - —A "master plan" exists but much work to do! (e.g., transition from "binary" to "probabilistic" warnings.
 - —NWS and Weather Industry on board (part of WRN).
 - —Improved protection of life, property and economic vitality.
 - Steep learning curve as we transition from binary to probabilistic warnings.
 - —Suitable for other than tornado hazards (e.g., heavy rain, flash floods, hail, strong winds)

engineeri<u>ng</u>

laboratory

engineering laboratory

May 03rd, 2016 NCST Advisory Committee Meeting

Progress on Implementation of the Joplin Tornado **Recommendations**

Questions?

