

May 16, 2018 NCST Advisory Committee Meeting

NCST Technical Investigation of Hurricane Maria's Impacts on Puerto Rico:

Overview of Preliminary Observations and Investigation Goals

Judith Mitrani-Reiser, Ph.D.

Director, Disaster and Failure Studies Program

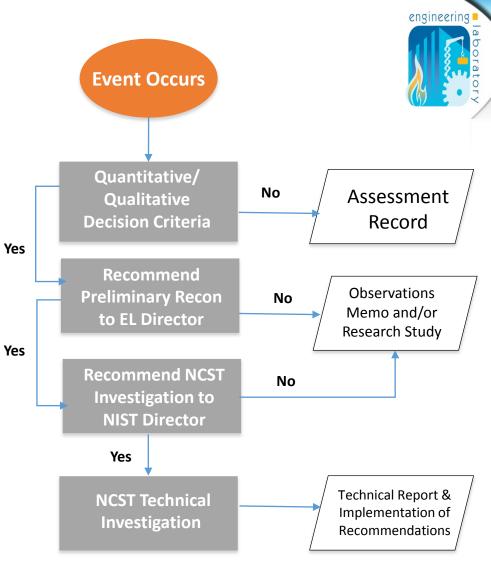
NIST

Long History of Disaster and Failure Studies at NIST

		,		
Earthquakes	Hurricanes	Construction & Building	Tornadoes	Fires
San Fernando, CA (1971) Mexico City, Mexico (1985) Loma Prieta, CA (1989) Northridge, CA (1994) Kobe, Japan (1995) Kocaeli, Turkey (1999) Maule, Chile (2010) Christchurch, NZ (2011) *Puebla, Mexico (2017) *Ongoing Studies NCST Investigations	Camille, MS/LA (1969) Alicia, Galveston, TX (1983) Hugo, SC (1989) Andrew, FL (1992) Fran, NC (1996) Mitch and Georges, LAC (1998) Katrina and Rita (2005) *Matthew, NC (2016) *Harvey, TX (2017) *Maria, PR (2017)	Skyline Plaza Apartments, Bailey's Crossroads, VA (1973) Willow Island Cooling Tower, WV (1978) Kansas City Hyatt Regency, Kansas City, MO (1981) Riley Road Interchange, East Chicago, IN (1982) Harbor Cay Condominium, Cocoa Beach, FL (1981) L'Ambiance Plaza, Hartford, CT (1987) Ashland Oil Tank Collapse, Floreffe, PA (1988) U.S. Embassy, Moscow, USSR (1987) Murrah Federal Building, Oklahoma City, OK (1995) World Trade Center Disaster, New York, NY (2001) Dallas Cowboys Indoor Practice Facility, May 2009	Jarrell, TX (1997) Spencer, SD (1998) Oklahoma City, OK (1999) Joplin, MO (2011) Moore OK (2013)	DuPont Plaza Hotel, San Juan PR (1986) First Interstate Bank Building, Los Angeles, CA (1988) Loma Prieta Earthquake, CA (1989) Hillhaven Nursing Home (1989) Pulaski Building, Washington, DC (1990) Happyland Social Club, Bronx, NY (1990) Oakland Hills, CA (1991) Watts St, New York City (1994) Northridge Earthquake, CA (1994) Kobe, Japan (1995) Vandalia St, New York City (1998) Cherry Road, Washington, DC (1999) Keokuk, IA (1999) Houston, TX (2000) Phoenix, AZ (2001) Cook County Administration Building Fire (2003) The Station Nightclub, RI (2003) Charleston, SC, Sofa Super Store Fire (2007) Witch Creek & Guejito, CA, WUI Fire (2007) Amarillo, TX, WUI Fire (2011) San Francisco, CA (2012) *Fuse-47, MD (2017)

Prioritizing DFS Field Activities

- (1) What is the unique new knowledge that would be potentially gained from this study?
- (2) What is the anticipated potential impact on standards, codes and practices?
- (3) Do we have sufficient resources (people and funding) to support a study? If there is an existing study in the same hazard area, what is the impact on the current study?
- (4) What is a current assessment of how site conditions would affect safety for a field deployment? Would current site conditions affect the timing of the field deployment?
- (5) Is there a request for NIST to conduct a study by others (local, state, Federal)? If so, would NIST provide complementary expertise or would NIST have primary expertise?
- (6) Does NIST have primary authority? If so, would NIST collaborate with other agencies where NIST provides complementary expertise or would NIST have primary authority and/or expertise?


Quantifying Events and Process Flows

1.0 Event Consequence						
1.0 Event Consequence	Low	Medium	High			
A . Mortality			3			
Facility context	0	1 to 2	>2			
Community context ¹	0 to 3	4 to 9	>10			
Regional context ²	0 to 5	6 to 19	>20			
B. Exposed Population						
Facility context	<100	100 to 499	≥500			
Community context	<1 000	1 000 to 9 999	≥10 000			
Regional context	<100 000	100 000 to 999 999	≥1 000 000			
C. Hazard and/or Failure Intensity						
Earthquake	≤ MMIIV	MMI V to VII	≥MMIVIII			
Hurricane at Landfall	≤Cat 3	Cat 4	Cat 5			
Tornado	≤EF3	EF4	EF5			
Coastal Inundation	< 3 ft	3 to 9 ft	≥ 10 ft			
Fire Spread in Structures	Fire spread not beyond area of origin	Fire spread throughout a structure	Fire spread beyond structure of origin			
Wildland Urban Interface Fire (WUI)	High Forest Service Fire Danger Rating	Very High Forest Service Fire Danger Rating	e Extreme Forest Service Fire Danger Rating			
Blast	< 99 lbs. TNT-equivalent	100 - 999 lbs. TNT-equivaler	t > 1000 lbs. TNT-equivalent			
Im pact	< 1 x 10° ft lb/sec	1 x 10 ⁸ to 1 x 10 ⁷ ft lb/sec	> 1 x 10 ⁷ ft lb/sec			
D. Physical Damage ¹	•	•	•			
Failure during Construction or in Servic	Minimal physical dama	ge Moderate physical dam	age Severe physical damage			

D. Physical Damage ¹			
Failure during Construction or in Service ²	Minimal physical damage	Moderate physical damage	Severe physical damage
	and/or loss of function	and/or loss of function	and/or loss of function
Engineered Building Systems ³	Minimal physical damage	Moderate physical damage	Severe physical damage
	and/or loss of function	and/or loss of function	and/or loss of function
Transportation & Utility Systems ⁴	Minimal physical damage	Moderate physical damage	Severe physical damage
	and/or loss of function	and/or loss of function	and/or loss of function
Non-Engineered Building Systems	Minimal physical damage	Moderate physical damage	Severe physical damage
	and/or loss of function	and/or loss of function	and/or loss of function
Count x Weight:			
Event Consequence Score:			

2.0 Evacuation and Response ⁵				
A. Evacuation	N orm al evacuation	Moderate evacuation challenges	Severe evacuation challenges	
B. Emergency Response	Normal operations	Moderate operational challenges	Severe operational challenges	
Count x Weight:				

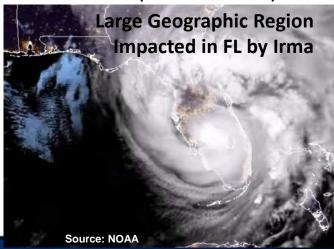
Evacuation and Response Score:

DFS Deploys to Record-Breaking Disaster Season

Preliminary Reconnaissance Deployments

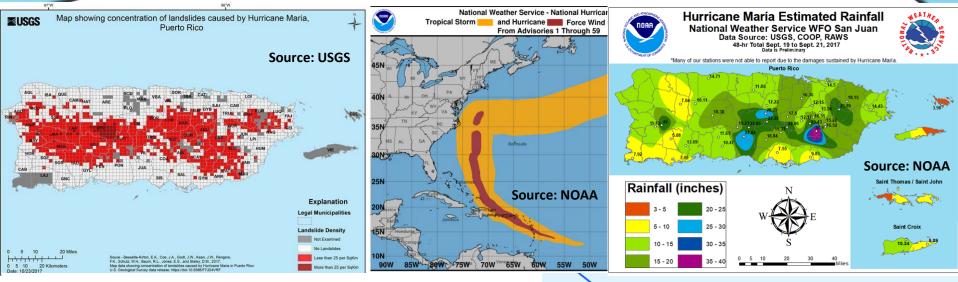
- December 2017 Hurricane Maria (Puerto Rico)
- October 2017 Northern California WUI Fires (Santa Rosa, CA)
- September 2017 Hurricane Irma (Florida Keys and South Florida)
- August 2017 Hurricane Harvey (Rockport and West Houston, TX)

Ongoing Non-NCST Studies


- FEMA collaboration of 2017 Hurricane Harvey (Rockport/Houston, TX)
- CoE collaboration of 2016 Hurricane Matthew (Lumberton, NC)
- Fuse-47 Apartment Complex Fire (College Park, MD)

NCST Established

Director approves investigation of 2017 Hurricane Maria (Puerto Rico)

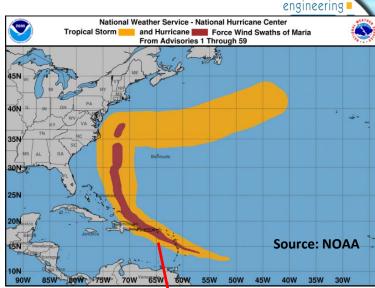


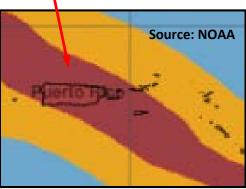
Hurricane Maria's Hazards in Puerto Rico

egend

- Winds: Maria made landfall as a strong Cat 4 storm; the storm tracked diagonally across PR, with hurricane-force winds extending over the entire Commonwealth (~3.4 million people); maximum estimated peak wind gusts were 140+ mph (National Hurricane Center, NIST)
- **Storm Surge:** Surge produced inundation up to 9 ft along the southeastern coast of PR (National Hurricane Center)
- Rain: Extensive rainfall, with max 38" (NHC)
- Landslides: Many hundreds of landslides occurred throughout mountainous regions (USGS)

Source: NIST


Hurricane Maria's Hazards in Puerto Rico


- TS Maria formed west of the Lesser Antilles on Sept 16*.
- Maria intensified to Category 5 status in two days, with sustained winds of 175 mph*.
- Hurricane Maria made landfall in Puerto Rico on Sept. 20 as a strong Category 4 storm*.
- Most intense hurricane to strike Puerto Rico since the Category 5 Okeechobee Hurricane of 1928**.
- Maria impacted Puerto Rico just 13 days after Hurricane Irma, which brought tropical stormforce winds to the entire Commonwealth***.

*Source: https://www.nhc.noaa.gov/archive/2017/MARIA.shtml; https://www.weather.gov/sju/maria2017

**Source: https://www.nhc.noaa.gov/outreach/history/#okee

***Source: https://www.nhc.noaa.gov/archive/2017/IRMA.shtml

C. Hazard and/or Failure Intensity				
Earthquake	≤ MMI IV	MMI V to VII	≥MMI VIII	
Hurricane at Landfall	≤Cat 3	Cat 4	Cat 5	

Population Exposure to Hurricane Maria's Hazard engineering

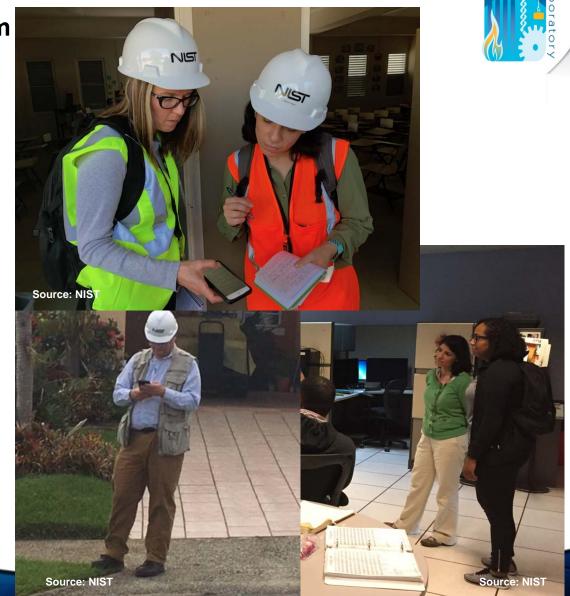
- Exposed Population: The entire Commonwealth of Puerto Rico was exposed to Maria (total population is approximately 3.3 million).
- Mortality: As of December 9, 2017, 64 deaths** in Puerto Rico were attributed to Hurricane Maria.
- The New York Times** and other news organizations estimate that the actual death toll could be over 1,000, based on analysis of daily mortality data from Puerto Rico's Vital Statistics Record Office.
- The Governor of Puerto Rico announced a recount and review of certified deaths; George Washington's University's School of Public Health awarded the project on assessing excess deaths in PR related to Hurricane Maria.***

^{***}Source: http://prfaa.pr.gov/governor-rossello-announces-the-george-washington-university-will-lead-efforts-to-review-the-death-count-associated-with-hurricane-maria-in-puerto-rico/

		1			
A. Mortality					
Facility context	0	1 to 2	>2		
Community context ¹	0 to 3	4 to 9	>10		
Regional context ²	0 to 5	0 to 5 6 to 19			
B. Exposed Population					
Facility context	<100	100 to 499	≥500		
Community context	<1 000	1 000 to 9 999	≥10 000		
Regional context	<100 000	100 000 to 999 999	≥1 000 000		

^{*}Source: https://www.census.gov/quickfacts/PR

^{**}Source: https://www.nytimes.com/interactive/2017/12/08/us/puerto-rico-hurricane-maria-death-toll.html


Hurricane Maria Preliminary Reconnaissance Team Ingineering

Team 1 (NIST Deployed Team Member, embedded with FEMA)

 Marc Levitan (Structural Engineering)

Team 2 (NIST Deployed Team, shadowing FEMA)

- Erica Kuligowski (Sociology, Emergency Communication)
- Judy Mitrani-Reiser (Engineering, Resilience)
- Carmen Martinez (IT, Logistics)

DFS uses NIST's Community Resilience Planning Guide (CRPG) to Structure Field Activities

Identify Important
Social Dimensions
to Prioritize in
Maria Deployment

- Family/Kinship
- Education
- Health
- Government
- Economy
- Media
- CommunitybasedOrganizations

DFS Collects Data Across Community Scales

Economy

MEP Center

Economy RSF

Health

Regional Hospitals

Emergency Management

Zone EM Directors

Education

Regional Directors

Department of Education

Other Sectors

Weather Service
Transportation &
Public Works
Power
Aqueducts &
Sewer Authority

PROMESA

Academic Partners

Structural Engineering Faculty from UPR Mayaguez

Social Science Faculty from UPR Rio Piedras

Social Science Faculty from Michigan State University in the field

Building Damage Disrupts Daily Functions

Engineered Buildings:

- Minimal structural damage caused by wind hazards to reinforced-concrete and concrete- block buildings with concrete roofs (common construction)
- However, some roof failures, extensive wind damage to metal building systems, and wind damage to rooftop solar panels
- Many buildings with good structural performance still suffered extensive nonstructural damage and loss of function due to rainwater penetration of the building envelope

Non-engineered Buildings:

Severe physical damage and loss of function

Building Damage Disrupts Daily Functions

D. Physical Damage ³					
Failure during Construction or in Service ⁴	Minimal physical damage and/or loss of function	Moderate physical damage and/or loss of function	Severe physical damage and/or loss of function		
Engineered Building Systems ⁵	Minimal physical damage and/or loss of function	Moderate physical damage and/or loss of function	Severe physical damage and/or loss of function		
Non-Engineered Building Systems	Minimal physical damage and/or loss of function	Moderate physical damage and/or loss of function	Severe physical damage and/or loss of function		

Infrastructure Failures Challenge Emergency Response

Electric Power:

- Complete electrical outage across PR; cascading effects to other lifelines
- Extensive damage to generation, transmission and distribution systems

Communications:

- Near complete loss of digital communications across PR
- Extensive damage to tower- and building-mounted cellular equipment; damage to "hundreds of miles" of fiber optic cable (source: AT&T)

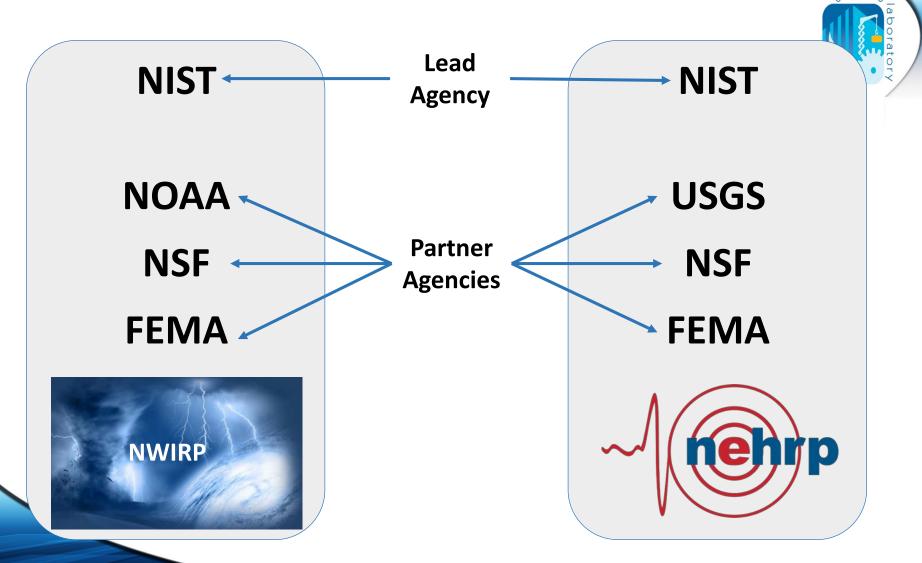
Infrastructure Failures Challenge Emergency Response

Emergency Response:

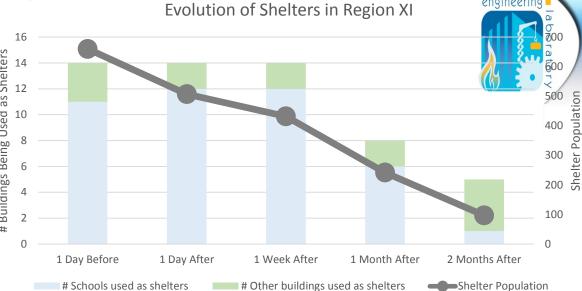
- •Communication challenges between emergency officials, critical facilities, shelters, and with the public for extended periods of time
- •Reliance on less efficient communication techniques (e.g., runners) used; redundancy gaps (e.g., few ham radios); overwhelming reliance on media

2.0 Evacuation and Response ⁷				
A. Evacuation	Normal evacuation	Moderate evacuation challenges	Severe evacuation challenges	
B. Emergency Response	Normal operations	Moderate operational challenges	Severe operational challenges	
Count x Weight:	0 x 1 = 0	0 x 3 = 0	2 x 5 = 10	
Evacuation and Response Score:		10/2 = 5.0		

Mini	mal phy	sical o	lamage
an	d/or los	s of fu	nction


NIST Director Establishes NCST

The NIST Director established a Team under the National Construction Safety Team (NCST) Act on February 21, 2018 to conduct a technical investigation of the effects of Hurricane Maria on the U.S. territory of Puerto Rico and characterize:


- (1) the wind environment and technical conditions associated with deaths and injuries;
- (2) the performance of representative critical buildings, and designated safe areas in those buildings, including their dependence on lifelines; and
- (3) the performance of emergency communications systems and the public's response to such communications.

NIST Leads National Hazards Statutory Programs engineering

Maria's Negative Impacts on Critical Social Functions

Education/schools:

- Shelter populations inhabiting schools months after the event, potentially delaying access to education
- Power losses/generator failures also delayed/disrupted education

Healthcare:

- Non-structural building damage/generator failures impacted delivery of healthcare
- Patients in multiple facilities had to be evacuated

Business and Supply Chain:

- Business closure data collected by NIST MEP
 Center show that food sector had largest impact
- Main reason for closures: power loss, building envelope damage, and road closures

Standardizing Disaster and Failure Studies

engineering Day boratory

Statutory Arm

- Evaluate hazard events and failures against statutory criteria
- Federal Advisory
 Committee (NCSTAC)
- Field studies authorities
 - Coordinate with agencies, academics, and others

Procedures Arm

- Field and safety protocols
- Human subjects (IRB, PRA)
- Equipment data collection and personnel safety
- Data preservation
- IT security
- Media releases

Research Arm

- Disaster metrology
- Collaborate across NIST
- Coordinate with
- NIST CR CoE
- NIST grant awardees
- Federal agencies
- Research centers
- Outreach/committee work