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Abstract
We analyzed the whole genome sequences of a family of four, consisting of two siblings and their
parents. Family-based sequencing allowed us to delineate recombination sites precisely, identify
70% of the sequencing errors, and identify very rare SNVs. We also directly estimated a human
intergeneration mutation rate of ∼1.1×10-8 per position per haploid genome. Both offspring in this
family have two recessive disorders--Miller syndrome, for which the gene was concurrently
identified, and primary ciliary dyskinesia, for which causative genes have been previously
identified. Family-based genome analysis enabled us to narrow the candidate genes for both of
these Mendelian disorders to only four. Our results demonstrate the unique value of complete
genome sequencing in families.
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Whole-genome sequences from four members of a family represent a qualitatively different
type of genetic data than whole-genome sequences from individual or sets of unrelated
genomes. They enable inheritance analyses that detect errors and permit the identification of
precise locations of recombination events. This leads in turn to near-complete knowledge of
inheritance states by precisely determining the parental chromosomal origins of sequence
blocks in offspring. Confident predictions of inheritance states and haplotypes power
analyses including identification of genomic features with non-classical inheritance patterns
such as hemizygous deletions or copy number variants (CNVs). Identification of inheritance
patterns in the pedigree permits the detection of ∼70% of sequencing errors and sharply
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reduces the search space for disease-causing variants. These analyses would be far less
powerful in studies that had fewer markers (e.g., standard genotype or exome datasets) or
that had sequence from fewer family members.

DNA from each family member was extracted from peripheral blood cells and sequenced by
Complete Genomics Inc. with a nanoarray-based short-read sequencing-by-ligation
technology (1) including an adaptation of the pairwise end-sequencing strategy (2). Reads
were mapped to the NCBI reference genome (coverage averaged 40×; Fig. S1, Tables S1 &
S2). Polymorphic markers employed for this analysis were SNVs with at least two variants
among the four genotypes of the family, averaging 802 bp between markers. We observed
4,471,510 positions at which at least one family member had an allele that varied from the
reference genome. This corresponds to a Watterson's theta (θW) of 9.5×10-4 per site for the
two parents and the reference sequence (3), given the fraction of the genome successfully
genotyped in each parent (Fig. S1). This is a close match to the estimate of θW = 9.3×10-4

we obtained by combining two previously published European genomes and the reference
sequence (7). Of the 4.5 million variant positions, 3,665,772 were variable within the family
– the rest were homozygous and identical in all four members. Comparisons to known SNVs
show that 323,255 of these 3.7 million SNVs are novel.

For each meiosis in a pedigree, each base position in a resulting gamete will have inherited
one of two parental alleles. The number of inheritance patterns of the segregation of alleles
in gametes is therefore 2n, where n is the number of meioses in a pedigree. In a nuclear
family of four, the Mendelian inheritance patterns can be grouped into four inheritance
states for each variant position, with children receiving: 1) the same allele from both the
mother and the father (identical), 2) the same allele from the mother but opposites from the
father (haploidentical maternal), 3) the same allele from the father, but opposites from the
mother (haploidentical paternal), and 4) opposites from both parents (nonidentical) (Fig.
S2). Adjacent variant base pairs in alignments of the family genomes have the same
inheritance state unless a recombination has occurred between these bases in one of the
meioses. This delineates inheritance blocks.

Many algorithms can identify the boundaries of blocks, and theory-driven implementations
are in wide use (4-6). For our complete genome sequence data, we developed an algorithm
to identify all states, including non-Mendelian states. One non-Mendelian state will occur in
regions where highly similar sequences are inadvertently compressed computationally (e.g.,
during sequence assembly of CNVs). In such a “compression block,” many positions will
appear to be heterozygous in all individuals, regardless of the inheritance patterns of the
positions contributing to the compression. Other non-Mendelian patterns are seen in regions
prone to errors in sequence calling or assembly, or that have inherited hemizygous deletions.
For both of these patterns, many positions will be observed as Mendelian inheritance errors
(MIEs). Our algorithm identified six states: one for each of the four Mendelian inheritance
states, one for a compression state, and one for an MIE-prone state (7). We identified 1.5%
of the genome in this pedigree as 409 compression blocks and 1.7% as 126 error-prone
blocks. Since these blocks are a source of false positives for recombination predictions,
SNVs, and disease candidate alleles, it is important to identify them (Fig. 1). The power to
precisely determine inheritance state boundaries is striking in families of at least four, and
would be reduced had we sequenced fewer individuals (Fig. 2). Meiotic gene conversions
could in principle be recognized in the same way as inheritance blocks: they would be
indistinguishable from a short region flanked by meiotic recombinations in the same
meiosis. We found that the great majority of candidate gene conversions regions were
caused by reads mismapped to repetitive DNA, like CNVs or satellites, and did not
conclusively identify gene conversion regions.
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Recombination in maternal meioses is thought to occur 1.7 times more frequently than in
paternal meioses (8). We inferred 98 crossovers in maternal and 57 in paternal meioses
(count includes both offspring), consistent with this estimate. The median resolution of the
155 crossover sites was 2.6 kb, with a few sites localized within a 30-bp window (Fig. 1).
Crossover sites were significantly correlated with hotspots of recombination as inferred from
HapMap data, where a hotspot is defined as a region with ≥10 cM/Mb; 92 of the 155
recombinations took place in a hotspot.

By identifying inconsistencies across the 22% of the genomes of the two children in
“identical” blocks, for which they are effectively twins, we computed an error rate of
1.0×10-5. We also determined error rate by other methods, including resequencing, which
gave similar estimates, ranging from 8.1×10-6 to 1.1×10-5 (7). Furthermore, ∼70% of the
errors in a four person pedigree can be detected as apparent MIEs and inconsistencies in
inheritance state blocks, so the effective base-pair error rate in the context of a pedigree is
∼3×10-6.

Analysis of the mutation rate, including germline and early embryonic somatic mutations,
requires highly accurate sequence data. Even with such data, however, most apparent
aberrations in allele inheritance will be due to errors in the data and not mutation. Our data
had thousands of such false-positive candidates for each true de novo mutation. Our initial
data encompassed 2.3 billion bases and contained 49,720 candidate MIEs consistent with the
presence of a single-nucleotide mutation. After excluding sites in MIE-prone and
compression states as well as sites that were unsuitable for probe design, 33,937 potential
mutations among 1.83 billion bases remained. We resequenced each of these candidates,
applying a stringent base-calling algorithm to confirm 28 candidates as de novo mutations.
In a final confirmation step, we verified all 28 mutations with mass spectrometry (7; Table
S3), corresponding to a mutation rate of 3.8×10-9 per position per generation per haploid
genome.

Since the raw estimate of 3.8×10-9 does not account for the true mutations that were not
conclusively identified by resequencing, we estimated a false-negative rate by applying the
base-calling algorithm to five Mb of independent resequencing data, divided into 25
randomly selected regions of the genome. A comparison of the resequencing data with the
complete genome sequence for the same regions provided a de novo mutation false negative
rate of 0.662 (95% C.I. 0.644 – 0.680). Adjusting for the false-negative rate produced an
unbiased mutation rate estimate of 1.1×10-8 per position per haploid genome, corresponding
to approximately 70 new mutations in each diploid human genome (95% confidence interval
of 6.8×10-9 to 1.7×10-8) (7). In great apes, CpG sites are reported to mutate at a rate eleven
times higher than other sites (9). We observed 5 CpG mutations, closely matching this
estimate. Of the remaining 23 mutations, seven were transversions and sixteen were
transitions. This yields a transition-to-transversion ratio of 2.3 (Table S3), once again similar
to a previous estimate of 2.2 for non-CpG sites (10).

Although both the observed transition-to-transversion ratio and the proportion of CpG
mutations in our data match predictions, our estimated human mutation rate is lower than
previous estimates, the most widely cited of which is 2.5×10-8 per generation (10) based on
three parameters: a human-chimpanzee nucleotide divergence per site (Kt) of 0.013, a
species divergence time of five million years ago, and an ancestral effective population size
of 10,000. More recent estimates indicate a nucleotide divergence of 0.012 (9), species
divergence time between six and seven million years ago (11-15), and ancestral effective
population size between 40,000 and 148,000 (16-19). With these parameter ranges and a
generation length of 15 to 25 years, the mutation rate estimate is between 7.6×10-9 and
2.2×10-8 per generation, which is consistent with our intergenerational estimate of 1.1×10-8.
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Our estimate is within one standard deviation (SD) of an earlier estimate of 1.7×10-8 (SD:
9×10-9) based on 20 disease-causing loci (20). The rate we report is for autosomes, and
should be lower than that of the Y chromosome, as in the male germline more cell divisions
occur per generation. Though our rate differs approximately as expected from the recently
reported estimate of 3.0×10-8 (95% CI: 8.9×10-9 – 7.0×10-8) for the Y chromosome, the
error rates make this difference not significant (21).

Genomic inheritance analysis facilitates the identification of alleles that cause genetic
disorders. Because genome sequences from a family of four provide near-exact
determination of inheritance state boundaries, the number of false-positive disease gene
candidates is greatly reduced compared to analyses lacking the context of a pedigree or
complete genome sequence (Tables S3 & S4, Fig. 3). Two disorders in this family, Miller
syndrome and primary ciliary dyskinesia, which affect both offspring but neither parent,
provided an opportunity to test this application. A parsimonious explanation is that each
phenotype arises from defects in a single gene, or a site regulating a single gene. The
inheritance mode is undetermined, but a recessive mode is more consistent with observed
data. We therefore examined each candidate variant by testing each of three inheritance
modes: dominant, simple recessive, or compound heterozygote (a subcategory of recessive).

The two recessive modes require that both offspring have identical, dysfunctional variants
for which the parents are heterozygous, and which may come either from the same position
(simple recessive), or occur at distinct positions within the same gene (compound
heterozygote). Genes consistent with these two recessive modes must lie in “identical”
inheritance blocks, since both offspring are affected, limiting the search space to the 22% of
the genome in these blocks. Since the phenotypes are rare, they are likely to be encoded by
rare variants, which further limits the possibilities. Only two missense SNVs in the CES1
gene matched the simple recessive mode (Table S4), while three genes fit the compound
heterozygote mode: DHODH, DNAH5, and KIAA0556 (Fig. 1). A small number of possibly
detrimental variants outside exons also matched the simple recessive mode: two in highly
conserved regions, one in an intronic sequence near a splice site, five in non-protein coding
transcripts, and one in a UTR. Concurrent with this study, the core exomes of the two
affected offspring were sequenced along with those of two unrelated individuals with Miller
syndrome (22). Compared to that study of only affected individuals, our analysis of just two
affected offspring and their unaffected parents reduced the number of gene candidates in the
core exome from nine to four; had we not sequenced the parents, we would have had 34
rather than four candidates (Fig. 3 & Table S5). The exome study supported DHODH as the
primary gene for Miller syndrome. DNAH5 had been previously identified as a cause of
primary ciliary dyskinesia, and so was likely the cause in these offspring as well (23).

Family genome analysis can clearly be effective for finding candidate genes encoding
Mendelian traits because sequence accuracy is enhanced. In addition, delineation of
recombination sites identifies inherited chromosome segments precisely, and reduces the
chromosomal search space for candidate genes (in this case to 22% of the genome). The
ability to identify large effects of very rare alleles in small pedigrees can complement the
power of genome-wide association studies in identifying weak effects of common alleles in
large populations. An unknown fraction of important phenotypes in humans are encoded by
non-exonic variants identified only by whole-genome sequencing. When the cost of
recruiting additional families is expensive relative to sequencing costs, sequencing genomes
of families will be an economical strategy for the identification of many disease-causing
genes. Constraining searches to very rare variants can provide considerable power, as
recently demonstrated for Freeman-Sheldon syndrome and congenital chloride diarrhea
(24,25). De novo mutations can be assayed, either as we have reported here, or through
family sequencing of more than two generations. As our knowledge of gene function
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increases, we will be able to use the power of family genome analysis rapidly to identify
disease-gene candidates. These data, along with relevant environmental and medical
information, will characterize the integrated medical records of the future.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The landscape of recombination. Each chromosome in this schematic karyotype is used to
represent information abstracted from the four corresponding chromosomes of the two
children in the pedigree. It is vertically split to indicate the inheritance state from the father
(left half) and mother (right half) as shown in the key. The three compound heterozygous
(DHODH, DNAH5, KIAA0556) and one recessive (CES1) candidate gene, depicted by red
bands, lie in “identical” blocks. Inset: Scatterplot of HapMap recombination rates (in
centimorgans per megabase, cM/Mb) within the predicted crossover regions. The maximum
value of cM/Mb found in each window is shown in red. The left hand histogram shows the
size distribution of recombination windows (log10 value: -0.58 ± 0.92). The upper graph
shows the cM/Mb distribution for the observed maximal values (red), for similarly sized
windows shifted by 6 kb (orange), and for similarly sized windows randomly chosen from
the entire genome (blue). Note that a shift of 6 kb from the observed locations eliminates the
correlation with hotspots. Of 155 recombination windows, 92 contained a HapMap site with
>10 cM/Mb. Only five randomly picked windows are expected to contain such high
recombination rates.
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Figure 2.
Power of four. Inheritance states illustrated for a single chromosome in six scenarios
representing restrictions of the dataset to the exome (for two siblings only or for the full
family) or to subsets of the family (parents and one child, two siblings, siblings and one
parent), compared to inheritance state consistency analysis (ISCA) with full data from all
four family members. The most supported state for each bin is shown as a color; the height
of each histogram bar is proportional to the number of informative markers supporting that
state. The father has two regions of homozygosity (thin red lines, bottom panel) on the short
arm of the chromosome, where it is not possible to distinguish the haploidentical maternal
from identical states (Fig. S2A, panel b). These regions are undetected when the mother's
genotypes are missing, because all markers positions in the region are uninformative (second
to bottom panel). A pedigree of two parents and one child has only one inheritance state, and
so provides no information on recombination. Red, identical; blue, nonidentical; green,
haploidentical maternal; yellow, haploidentical paternal. Chromosome structure is annotated
as in Fig. 1.
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Figure 3.
The power of family genome inheritance analysis. The number of false-positive candidates
drops exponentially as the number of family members increases. (A) Number of candidate
SNVs consistent with a simple recessive inheritance mode. (B) Number of candidate genes
consistent with a compound heterozygous model. The different groupings of parents (large
silhouettes) and children (small silhouettes) are depicted below. Dashed lines join the
average values of each grouping. For this figure, probably detrimental includes missense,
nonsense, splice defect, and non-initiation; possibly detrimental also includes UTR, non-
coding, and splice-region. A block of SNVs such that all SNPs in the block are within 5 kb
of another SNV in the block is counted only once, as together these are likely to encode at
most one phenotype. A: all possibly detrimental SNVs; B: all probably detrimental SNVs;
C: rare possibly detrimental SNVs; D: rare probably detrimental SNVs.
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