

Stimulating Energy Innovation

Rajeev Ram Program Director ARPA-E Pawel Gradzki Booz Allen Hamilton

ARPA-E PORTFOLIO

...day-ahead market & spot market coordinate additional generation

...generator spins up: coal/nuclear/gas (day-ahead), gas (spot market)

...power flows into the grid

...electrons flow along path of least resistance

...the load draws power from the grid

Workshops find the white space

Control	Control Theory		Control Engineering		
Network	Linear	Centralized	Dynamic		
control	Convex	Scheduling	Real-time		
Distributed Architecture			Routing		
	Resilient Multi-term HVDC	HVAC			
-	Thin AC Powe Flow Contro	Point-point er HVDC I			

Actuators

<u>Storage</u>

Make renewables dispatchable

Vertically Integrated Teams HV Grid-Scale Transistors and Solid-State Transformers

GENI ARCHITECTURES FOR THE GRID

Routing electrical power

Mobilizing large numbers (100k) of small assets

Benefits of Routing Power

Power Routing

U.S. DEPARTMENT

12

•Power flow control to route power along underutilized paths, 80% less transmission infrastructure required

GA Tech study of simplified IEEE 39 Bus system with 4 control areas, operation simulated for 20 years, 20% RPS phased in over 20 years, sufficient transmission capacity added each year to eliminate curtailment of renewable generation

TOPOLOGY CONTROL ALGORITHM

- Large size of most real-world power system models (~10k) in the US
- Large number of additional integer variables representing on/off line states
- Not separable

power flow equations embedded in the optimization formulation

<u>Example</u>

ISO-NE: 689 generators, 2209 loads, 4500 bus, 6600 binary variables

Topology control (DC-OPF approx): 82 hrs [CPLEX on dual-core. 3.4GHz, 1GB RAM] to optimize state only 4 transmission lines

savings +5% for summer peak conditions / +7% for a medium load summer condition

Hedman, K. W., O'Neill, R. P., Fisher, E. B., and Oren, S. S. (2011), "Smart flexible just-in-time transmission and flowgate bidding," IEEE Transactions on Power Systems, Feb 2011.

13

ROUTING POWER TODAY

Utility: AC Univesal Power Flow Controller

Vertically Integrated Teams Power Routers

- 10X lower than BAU (\$30/kW)
- 13 kV/1MW units in tie-line field demo
- 13 kV 5 bus test bed to show routing

ARPAE PROGRAMS DEFINE PROBLEMS... ...NOT SOLUTIONS

NYPA UPFC

ROUTING POWER TODAY

Multiterminal HVDC

17

GENI ARCHITECTURES FOR THE GRID

Routing electrical power

Mobilizing large numbers (100k) of small assets

Scalable real-time decentralized Volt/VAR control

Key Innovations

- Distributed control through local sensing, computation, and communication, yet jointly optimize certain global objectives
- Characterize AC-OPF subproblems that are polynomial-time solvable
- Propose a new approach to solve OPF
- 100k inverters for Volt/VAR control

Vertically Integrated Teams Algorithms for Topology Control

 Charles River Associates	Project management, algorithms, impact assessments, integration, commercialization		
Boston University	Optimization algorithms, market design issues		
Tufts University/ Northeastern University	Express algorithms for voltage and transient stability analysis		
Polaris Systems Opt./ Paragon Decision Technology	Software implementation		
PJM Interconnection	Operation and implementation consulting and review		

Estimates indicate that implementation of TC in the entire US electrical grid would save of \$1-2 billion in generation costs and would reduce the needs for transmission investments

STIMULATING INNOVATION FROM ADJACENT FIELDS

OpenADR, low-cost, internet-protocol based telemetry solutions, and intelligent forecasting and optimization techniques to provide "personalized" dynamic price signals to <u>millions</u> of customers in timeframes suitable for providing ancillary services to the grid

Grid Scale Electronics Cree, NRL, NCSU, ABB

 15 kV SiC IGBT Switch Module – World's Highest Voltage Semiconductor Switch

 15 kV/10 A SiC p-IGBTs Fabricated On 100 mm 4HN-SiC Wafer Copyright © 2012, Cree, Inc. Developed 15 kV SiC IGBT – World's Highest Voltage Semiconductor Switch

HV Grid-Scale Transistors and Solid-State Transformers

SOLAR ADEPT TARGETS

System Categories	Cost	Voltage & Power	CEC Efficiency	Size
Category 1	\$0.05/W	>3	>98%	Single-chip DC/DC
Sub-module		converters	cell-to-AC	Inside Module Frame
converter (Smart bypass)		/module	MPPT	
Category 2	\$0.20/W	>600 V	>98%	< 2 lbs
Microinverter		>250 W	cell-to-AC	Integrated: < 10 parts
(Residential)				
Category 3	<\$0.10/W	100kW	>98%	< 50 lbs
Lightweight (Commercial)			cell-to-AC	
			MPPT	
Category 4	\$0.10/W	> 2 MW	>98%	< 1000 lbs
Utility-scale Converters		scalable	module-	
			to-grid	

UTILITY SCALE INVERTER

1MW Photovoltaic Inverter

- •Weight 10,000 lbs
- •Modular from 50 kW 1 MW
- •Si IGBT (motor parts)
- 30% cost magnetics (steel & copper)
- \$0.2/W (in China \$0.17/W)
- •10 yr life (20 yr extended warranty)
- •>500kW (approx annual sales 1k units)

DISSIMILAR MODULES IN SERIES

MICROINVERTERS

PV Modules with Microinverters

Barriers to adoption:

- Cost to Install
- Risk Averse Customers
- Cost to Maintain/Repair (multiple point of failure)

Transformer

Utility Grid

MULTISTAGE INVERTER

1/10 the weight , 1/3 lower losses, 1/2 the manufacturing cost

	Power (Watt)	Weight (lbs)	Lbs/kW	CEC Efficiency	Est. Mfg Cost
PVPowered	35K	1200	34	95.5%	\$10K
SATC N	30K	1204	40	95.0%	\$10K
O IDEAL POWER CONVERTERS	30K	80	2.7	97.0%	<\$5K

Hi-voltage switches and hi-frequency transformer

29