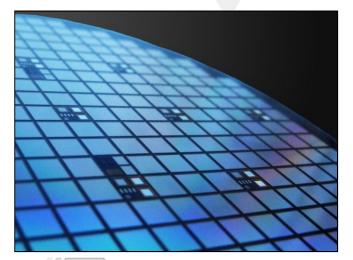
Silicon Carbide Device Update


David Sheridan

VP Technology Development

High Megawatt Power Conditioning System Workshop

david.sheridan@semisouth.com

www.semisouth.com

Material property	Si	4H-SiC	GaN
Bandgap	1.12 eV	3.25 eV	3.4 eV
Breakdown field	0.25 MV/cm	~3 MV/cm	~3 MV/cm
Thermal conductivity	1.5 W/cm•K	4.9 W/cm∙K	1.3 W/cm•K
Electron mobility	1200 cm²/V•s	800 cm²/V•s	900 cm²/V•s
Dielectric constant	11.7	9.7	9

- Silicon carbide is an ideal power semiconductor material
- Most mature "wide bandgap" power semiconductor material
- Electrical breakdown strength ~ 10X higher than Si
- Commercial substrates available since 1991 –
- ✓ now at 100 mm dia; 150 mm dia soon
- Defects up to 1,000 times less than GaN
- <u>Thermal conductivity ~ 3X greater than Si or GaN</u>

SemiSouth — SiC Power Semi Technology Leader

 \rightarrow 1200 V – 1700 V Trench "normally – off" JFETs \rightarrow 650 V, 1200V – 1700 V Trench "normally – on" JFETs \rightarrow 1200 V Schottky Diodes

SemiSouth silicon carbide trench technology offers higher efficiency, greater power density & higher reliability than comparable silicon-based devices

Servers

Wind

SiC Wafer

SemiSouth SemiSouth VJFET Technology

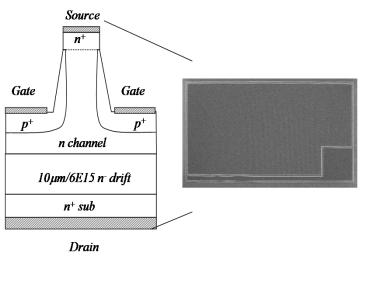
Why the SiC Trench JFET?

a Cost

a 3-10 X smaller die size

Up to 50% fewer manufacturing steps

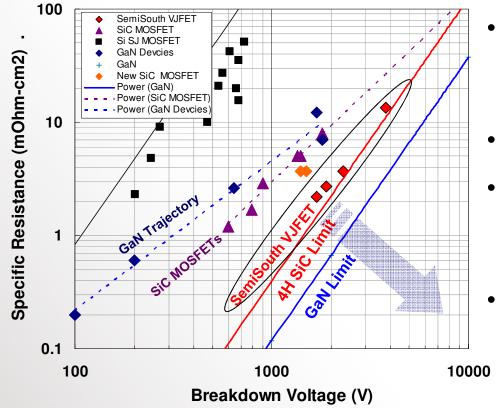
Performance


5-10X lower switching energies
 Normally-on or off (industry first and only)
 Enables high-frequency <u>and</u> high-efficiency
 Industry best on-resistance per unit area

Reliability

Rugged structure for SiC JFET switch

- Over 1,000 hour HTRB
- No known degradation issues
- Robust operating range

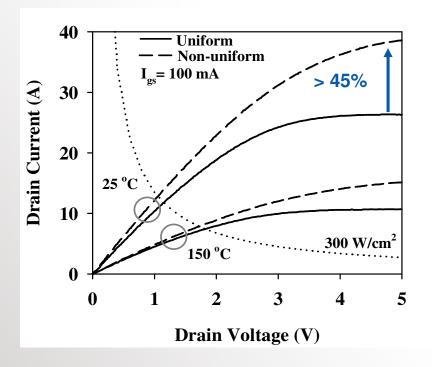

SemiSouth Vertical-Channel JFET*

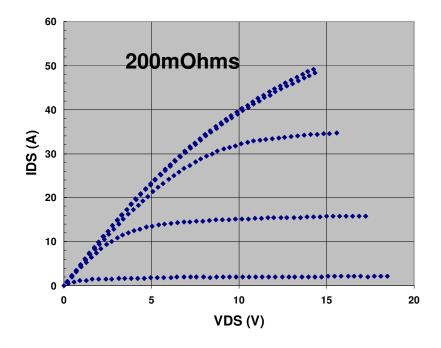
- (+) Few mask layers
- (+) Low RPT
- (+) $\mathbf{R}_{(on)sp} \approx 2-3 \text{ m}\Omega^* \text{cm}^2$

SemiSouth Industry Leading Performance

Proprietary Compact design leads to ultra-low specific on-resistance in power JFET (normally-on or normally-off versions available)

- SemiSouth first and only to offer TRENCH SiC JFET beginning in 2008
- Near theoretical specific R_{DSON}
- Normally-OFF <u>OR</u> Normally-ON use same device structure & manufacturing steps
- High reliability

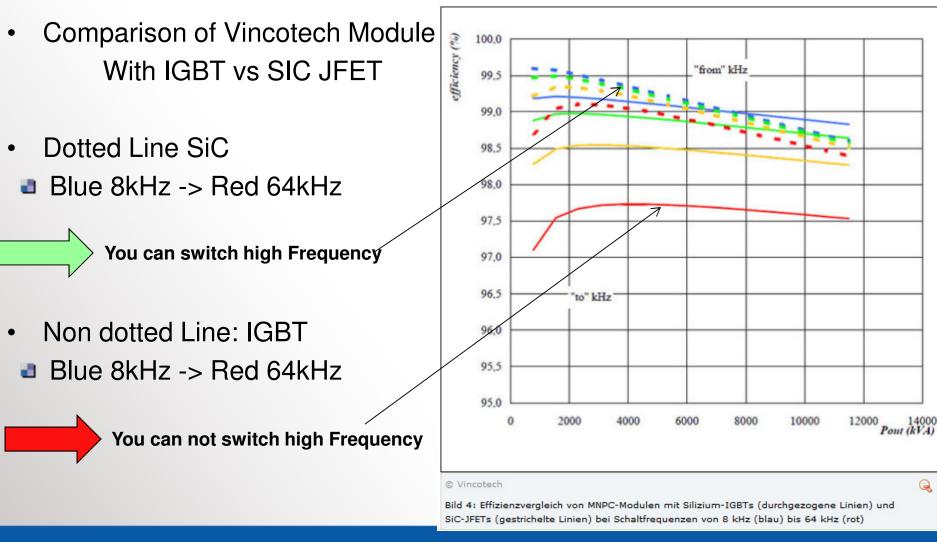

SemiSouth Advanced JFET Concepts


High Current Normally-Off

- Demonstrated novel channel design for ٠ improved saturation current
- Significant increase in current and increased threshold range

3.3kV Design Normally-Off

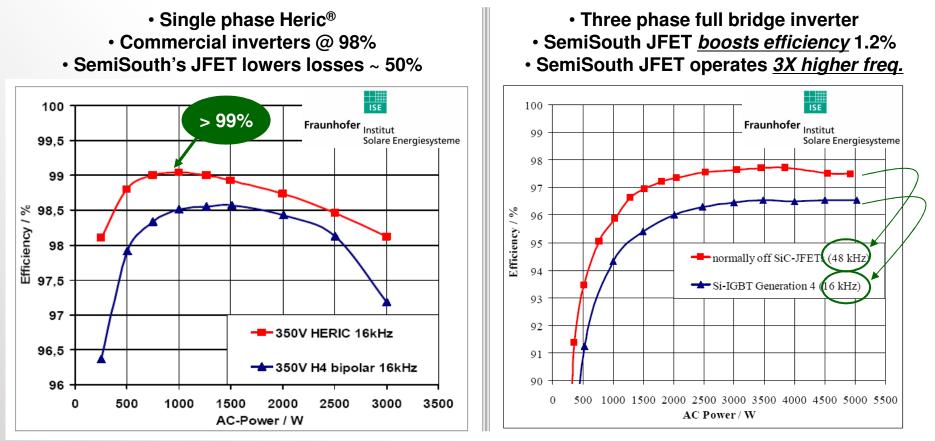
- Normally-off SiC JFET 3.8kV Design ٠ (edge termination limited)
- Exceptionally low Rds(on) = 200mOhms > 50A saturation current



SIC UPDATE

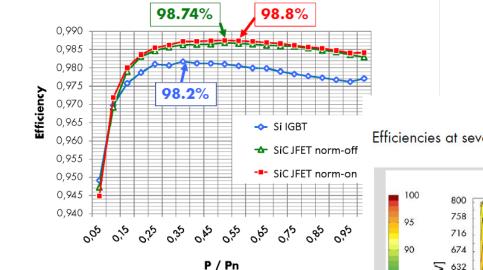
SemiSouth Comparison IGBT vs SiC

SIC UPDATE

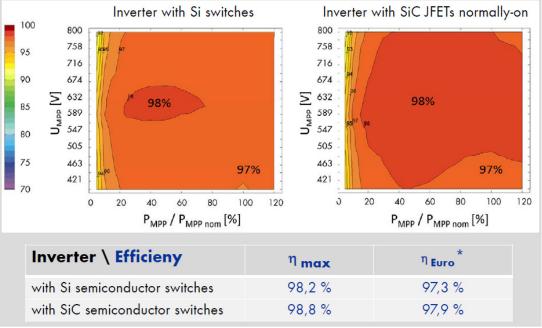

JFETs gegen IGBTs

7

Performance Validation WORLD RECORD Power Conversion Efficiency*


"We now use junction field-effect transistors (JFETs) made of silicon carbide (SiC) manufactured by SemiSouth Laboratories Inc.. This is the main reason for the improvement", - Prof. Bruno Burger, leader of the Power Electronics Group at Fraunhofer ISE, July 2009 press release.

* Bruno Burger, Dirk Kranzer, "Extreme High Efficiency PV-Power Converters," EPE, Barcelona, Spain, 8-10


September 2009 SiC UPDATE

SemiSouth SMA SiC JFET Inverter

Efficiencies at several DC link voltages (400V up to 800V) - "Photon test"

* European Efficiency - specific weighted average value

20

Dr. Regine Mallwitz, SMA: SiC & GaN User Forum, Birmingham 2011

SIC UPDATE

1. Technical benefit of SiC semiconductors

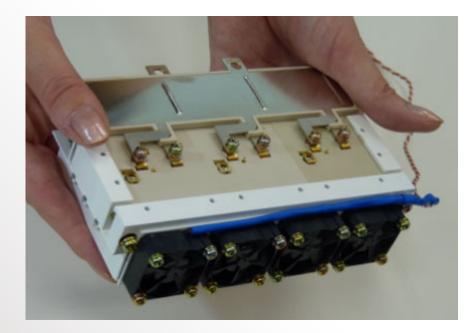
SemiSouth SMA Quote about SiC

SiC devices promise

- low switching losses
- high rated voltages
- high operating temperature
- high radiation hardness

For PV inverters this properties offer possibilities toward

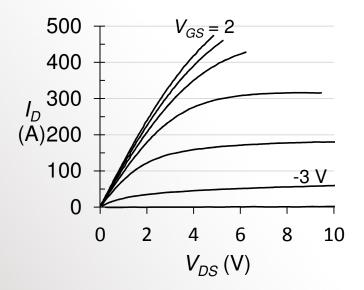
- improved effiency above 99% (at same switching frequency like today)
- higher switching frequencies (at same level of losses like today)
- higher level of output power (at same switching frequency and losses)
- higher DC input voltages

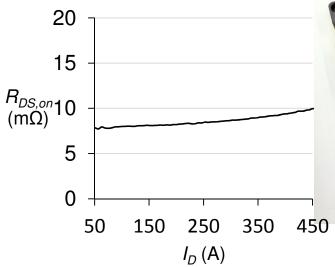

- ightarrow reduction of cooling effort ightarrow system size
- ightarrow reduction of system size ightarrow system costs
- → reduction of specific cost (per W)

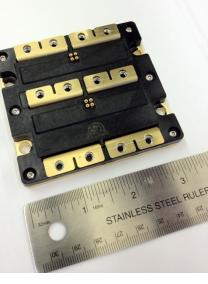
Dr. Regine Mallwitz, SMA: SiC & GaN User Forum, Birmingham 2011

SemiSouth Automotive prototype inverter

Sato, et al, International Conf. on SiC and Related Materials, Sept 2011


- Future Power Electronics Technology (FUPET) has developed an all-SiCdevice-based three-phase inverter with a 0.5-liter volume, verified to achieve an output power density of <u>30kWh/I</u>.
 "We believe this is the world's highest output power density for a smallvolume inverter," commented FUPET officials.
- Using SiC junction field-effect transistor (JFET) devices procured from SemiSouth Laboratories, the power modules operate up to 200 ℃.
- 500cc inverter connected to a threephase motor achieved <u>15kW output</u>, which is 30kW/l or 30W/cc. At 15kW output, conversion efficiency was <u>99%</u>.




SiC JFET power module

Only 36 mm² of JFET die area per switch position (4 x SJDC120R045)

Switching energies at 25 $^{\circ}$ C of SiC VJFET modules (I _D = 100 A) and a Si IGBT module (I _C = 150 A)				
	Turn-on energy	Turn-off energy	Total switching losses	
Enhancement-mode SiC VJFET	0.72 mJ	0.46 mJ	1.18 mJ	
Depletion-mode SiC VJFET	0.33 mJ	0.90 mJ	1.23 mJ	
Si IGBT (Infineon)	8.5 mJ	8.5 mJ	17.0 mJ	

SemiSouth

- □ SiC trench JFET production since 2008
- Size and weight reduction are key elements to fight increasing faw material cost
- High frequency (power density) with improved efficiency is key to reducing weight and cost

→ HV SiC devices are possible, and scaling to higher currents

- □ What devices are needed for MV HV applications?
- □ Initial insertion applications?
- Device requirements?
- □ Cost targets?

