
1. Introduction

Accurate knowledge of the thermophysical proper-
ties of helium is desirable for many applications in
metrology [1-3]. At low and moderate densities, ther-
modynamic properties are well described by the virial
expansion, which gives a rigorous series of corrections
to ideal-gas behavior:

(1)

In Eq. (1), p is the pressure, ρ the molar density, R the
molar gas constant, and T the absolute temperature.
The second virial coefficient B(T ) depends only on
interactions between pairs of molecules, while the third
virial coefficient C(T ) depends on interactions among
three molecules.

In 2009, two of us reported [4] path-integral Monte
Carlo (PIMC) calculations of the third virial coefficient
C(T ) for 4He at temperatures from 24.5661 K (corre-
sponding to the triple point of neon) to 10 000 K. The
values of C(T ) reported in Ref. [4] were based on a
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representation of the pair potential [5] and a three-body
potential [6] that were state-of-the-art (or nearly so) at
the time the work was performed.

The uncertainties obtained in Ref. [4] were smaller
than those of the best experimental results by approxi-
mately an order of magnitude, with the majority of the
uncertainty coming from the three-body potential.
Further improvement is desirable—for example, in a
proposed pressure standard based on capacitance
measurement at 273.16 K, the uncertainty in C is still
the largest contributor to the uncertainty budget
between approximately 8 MPa and 20 MPa [7]. It is
also desirable to extend the results to lower tempera-
tures, where helium plays an important role in temper-
ature metrology.

Recently, a state-of-the-art pair potential for helium
has been developed [8, 9]. The new potential incorpo-
rates not only extremely accurate results for the poten-
tial energy in the Born-Oppenheimer (BO) approxima-
tion [10], but also accurate calculations for the most
important post-BO effects (adiabatic, relativistic, and
quantum electrodynamics). The claimed uncertainty of
the new pair potential is at least one order of magnitude
smaller than that of the potential we used in Ref. [4].
This pair potential has been used to obtain highly accu-
rate values for the second virial coefficient B(T ) and for
the low-density limits of the viscosity and thermal
conductivity [9]. In addition, a new three-body poten-
tial has been developed at the full-configuration-
interaction (FCI) level [11], reducing the uncertainty of
the three-body potential by approximately a factor of
five compared to that used in Ref. [4].

In this work, we take advantage of the availability of
these better potentials, and of increased computing
capabilities and algorithmic improvements, to recal-
culate C(T ) with lower uncertainty than could be
obtained in Ref. [4] and to extend our calculations to
lower temperatures. We also extend our work to the
third acoustic virial coefficient, and give some results
for the 3He isotope. In this paper, we will focus on
aspects that differ from Ref. [4], such as the calculation
of acoustic virials and the low-temperature results. The
reader is referred to Ref. [4] for further background, a
literature review, and details of the uncertainty analysis.
Some additional details of the PIMC calculations,
especially at low temperatures where spin statistics
become important, are discussed in Ref. [12].

2. Intermolecular Potentials

For the pair potential, we use the potential first pre-
sented by Przybytek et al. [8] and described in more
detail by Cencek et al. [9]. A function for the uncertain-
ty of this potential is given in the Supplemental
Material for Ref. [8], so that upper- and lower-bound
potentials can be obtained by adding or subtracting the
uncertainty function from the recommended pair poten-
tial. While Przybytek et al. do not attach a rigorous
statistical interpretation to their “uncertainty,” we
believe that it is reasonable to treat it as an expanded
uncertainty with coverage factor k = 2, which corre-
sponds to a 95 % confidence limit. For calculations
with 3He, a small adjustment (negligible in the context
of this work) was made to scale the adiabatic correction
to the pair potential [9] to account for the different
mass.

For the nonadditive three-body potential of helium,
we use the FCI potential of Cencek et al. [11]. This
potential is stated to have a relative uncertainty of 2 %,
which again we interpret as an expanded uncertainty at
the k = 2 level. For our uncertainty analysis, we con-
struct perturbed three-body potentials FCI– (obtained
by multiplying the corresponding potential by 1.02
where it is negative and by 0.98 where it is positive)
and FCI+ (multiplying by 0.98 where it is negative and
by 1.02 where it is positive).

3. Calculation Methods
3.1 Third Density Virial Coefficient

It has been shown in Refs. [4] and [12] that the
second virial coefficient B(T ) and the third virial coef-
ficient C(T ) for a quantum system obeying Boltzmann
statistics can be written as

(2)

(3)
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where NA is Avogadro’s constant, β = 1/kBT, and the
effective two-body and three-body potentials U– 2(r)
and V–3(r1, r2) are given by the following path-integral
expressions:

(4)

(5)

where U2 (r) and V3 (r1 ,r2 ,r3 ) are the two-body and
three-body potential energies, respectively, and m is the
particle mass. In Eq. (5), the position of particle 3 in the
τ = 0 imaginary-time slice has been fixed at the origin
of the coordinate system, due to the translational
invariance of the integrand. The variables r1 and r2

reduce to the position of particles 1 and 2, respectively,
in the classical limit, that is, when T is so high that the
paths xk (τ) (k = 1, 2, 3) contributing most to the path
integrals shrink to a point. A similar procedure was
followed for Eq. (4), where we used the translational
invariance of the integrand to fix the position of
particle 2 in the τ = 0 imaginary-time slice at the
origin. The variable r in Eq. (4) denotes the position of
particle 1 in the classical limit.

The three-body potential energy is given by

(6)

where U3 (r1, r2, r3 ) denotes the non-additive part of the
three-body potential energy and U2 (r) is the pair poten-
tial. In Eqs. (4) and (5), the path integrals are per-
formed over all closed paths that have the origin as

endpoints, that is, paths x(τ) fulfilling the conditions
x(0) = x(β) = 0. The path integrals are normalized in
such a way that their discretized form reads [12]

(7)

where x(P+1) = x(1) = 0
de Broglie wavelength of a particle with mass m. The
integrand of the middle expression in Eq. (7) can be
interpreted as the probability of having a ring polymer
with P beads in the positions given by the coordinates
x(1),...,x(P) [13]. In the following subsection, this quanti-
ty will be denoted as Fring .

At low temperatures where Boltzmann statistics is no
longer a good approximation, the above equations
must be extended to incorporate Bose-Einstein or
Fermi-Dirac statistics. The details of this extension
are given in Ref. [12], where it was shown that the
incorporation of spin statistics is necessary for both
isotopes of helium at temperatures below approximate-
ly 7 K.

The number of beads P was chosen as a function of
temperature according to P = 7 + (1200 K)/T for
4He and P = 7 + (1800 K)/T for 3He, with the resulting
P rounded to the nearest integer. Preliminary calcula-
tions showed that these choices for P provide con-
verged results (well within the statistical uncertainty
of the calculation) for C(T ) throughout the range of
temperatures spanned by the present work. The ring
polymers were generated as described in Ref. [4]. As in
Ref. [4], we used the VEGAS algorithm [14] for the
numerical integration of Eq. (7). We averaged 256
independent calculations, each with 106 integration
points, in order to obtain the final result and its statisti-
cal uncertainty. For low temperatures where spin
statistics are significant, the additional non-Boltzmann
terms required were calculated as described in Ref. [12]
with 128 independent integrations.

Volume 116, Number 4, July-August 2011
Journal of Research of the National Institute of Standards and Technology

731

( )

( )

2

2
1

1 2 0

2
2

2 1 2

exp ( )

d ( )1exp
2 d

d ( ) ( ) ( ) d
d

U r

m

U

β

β

τ
τ

τ τ τ τ
τ

− =

⎡ ⎛
−⎢ ⎜⎜⎢ ⎝⎣

⎞
⎤+ + + −⎟ ⎦⎟⎠

∫ ∫


D D
x

x x

x
r x x

( )

3 1 2 1 2 3

22 2
31 2

0

3 1 1 2 2 3

1exp ( , ) exp

d ( )d ( ) d ( )
2 d d d

( ), ( ), ( ) d

[

],

V

m

V

β

β

ττ τ
τ τ τ

τ τ τ τ

⎡ ⎤− = −⎣ ⎦

⎛ ⎞
+ + +⎜ ⎟⎜ ⎟⎝ ⎠

+ +

∫

∫


D D Dr r x x x

xx x

r x r x x

3 1 2 3 3 1 2 3 2 1 2

2 2 3 2 1 3

( , , ) ( , , ) ( )

( ) ( ) ,

V U U

U U

= + −

+ − + −

r r r r r r r r

r r r r

2

0

3/ 2
( ) 3

3
2

2( 1) ( )
2

1

1 d ( )exp d
2 d

lim d

exp 1 ,

PP
i

P i

P
i i

i

m

P

P

β τ τ
τ

π

→∞ =

+

=

⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦

⎛ ⎞
≡ Λ ⎜ ⎟Λ⎝ ⎠

⎡ ⎤− − =⎢ ⎥Λ⎣ ⎦

∫ ∫

∏∫

∑



D x
x

x

x x

Band 2 is theh mk TπΛ =



3.2 Third Acoustic Virial Coefficient

The square of the speed of sound in a gas as a func-
tion of pressure on isotherms has the low-density
expansion:

(8)

Here, u is the speed of sound; βa , γa , and δa are the
temperature-dependent second, third, and fourth
acoustic virial coefficients; M is the molar mass; and
γ0 ≡ Cp /Cv is the ratio of the constant-pressure heat
capacity to the constant-volume heat capacity in the
ideal-gas state, which is exactly 5/3 for a monatomic
gas. [The ideal-gas heat-capacity ratio γ0 should not be
confused with the acoustic virial coefficient γa.] Insofar
as γa is a second-order correction for non-ideality, it is
analogous to the third density virial coefficient C. We
choose to discuss RTγa instead of γa because RTγa has
both the units and the order of magnitude of the more
familiar third density virial coefficient C. Exact
thermodynamic relations connect γa to the density
virial coefficients B and C and their first two tempera-
ture derivatives [15]. These relations are:

(9)

where βa is related to the second density virial coeffi-
cient B(T ) and its temperature derivatives by

(10)

and

(11)

(12)

For PIMC calculation of the acoustic virial coeffi-
cients, it is necessary to derive path-integral expres-
sions for the temperature derivatives of the density

virial coefficients. For this purpose, we use the deriva-
tives of Eqs. (2) and (3) with respect to β = 1/kBT,
together with the identities

(13)

(14)

In Eqs. (2) and (3), the second and third density vir-
ial coefficients are given as a sum of terms that involve
the integral of products of ring-polymer probability dis-
tributions with Boltzmann factors of the interaction
potential averaged along the path. Making use of the 

probability distribution can be written as

(15)

where the last equality defines the quantity a. The
Boltzmann factors of the potential along the paths quite
generally have the form

(16)

whose β derivative is given by

(17)

where the last equality defines the quantity b.
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Path-integral expressions for the temperature deriva-
tives of B(T ) and C(T ) can then be derived with the use 
of Eqs. (15) and (17). For example, the first tempera-
ture derivative of B(T ) can be written as

(18)

where Fring(1) is the probability distribution for the
configurations of the first ring polymer, with a corre-
sponding definition for the second, and a1 and a2 are the
quantity a defined in Eq. (15) for the first and second
ring polymer, respectively.

In the case of C(T ), Eq. (18) can be modified to
calculate the temperature derivatives of the terms
appearing in Eq. (3), taking into account the fact that
the potential in the definition of W is actually a three-
body potential and that three ring polymers must be
considered. As a consequence, there is another distribu-
tion probability Fring(3) for the third particle, as well as
an integration over these ring-polymer configurations

measure). Moreover, a1 + a2 must be replaced by
a1 + a2 + a3, and the integral over dr in Eq. (18)
becomes an integration over dr1dr2 when calculating
dC/dT.

To calculate the second temperature derivatives of
the virial coefficients, we use Eq. (14) together with the
relations

(19)

(20)

The final result for the second derivative of B(T ) is

(21)

The second derivative of C(T ) is given by a similar
expression, after performing on Eq. (21) the same sub-
stitutions described above for the first derivative,
together with replacing the term 3(P – 1) by 9(P – 1)/2.

The temperature derivatives of C(T ) were used to
calculate L(T) according to Eq. (11). The same PIMC
methodology was used as described in Sec. 3.1; the
values were obtained from 256 independent calcula-
tions with 106 integration steps each.

4. Results
4.1 Third Virial Coefficients

Table 1 shows our calculated C(T ) for 4He. In addi-
tion to all the temperatures given in Ref. [4], Table 1
includes lower temperatures (including some corre-
sponding to fixed points on the ITS-90 temperature
scale) and a few additional intermediate temperatures.
Spin statistics significantly affect C(T ) below about
7 K; this is discussed in detail in Ref. [12], where we
describe the method of incorporating these effects and
show the size of the various exchange contributions at
low temperatures for both 3He and 4He.

The low-temperature values in Table 1 differ slightly
from those given in Ref. [12]; we discovered a small
error in our earlier implementation of the three-body
potential and the values in Table 1 supersede those in
Ref. [12]. These differences are smaller than the uncer-
tainties of the calculated C(T ), and the conclusions of
Ref. [12] are not affected.
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Table 1. Third virial coefficients C(T ) for 4He calculated in this
work and our estimates (see Sec. 4.3) of their expanded (k = 2)
uncertainties U(C)

T C U(C)
(K) (cm6 ⋅ mol–2) (cm6 ⋅ mol–2)

2.6 292. 53.
2.8 616. 45.
3 826. 35.
3.2 950. 30.
3.5 1050. 24.
3.7 1070. 21.
4.0 1086. 17.
4.2 1075. 15.
4.5 1047. 13.
5 987. 10.
6 854.8 6.2
7 744.5 4.2
8.5 620.7 3.2

in the integration



4.2 Third Acoustic Virial Coefficients

In Table 2, we show results for the third acoustic
virial coefficient γa . Because the quantity actually
calculated by PIMC is L (see Sec. 3.2 and Eqs. (9) and
(11)), and because of the variation of the magnitude
of γa with temperature, we tabulate the quantity RTγa

(and its expanded uncertainty as discussed below).
Calculation of RTγa via Eq. (9) requires values of B and
βa , which we obtain from the work of Cencek et al. [9]
and which have such small uncertainties that they can
be considered exact in the context of these calculations
of γa .
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Table 1. (Continued))

10 530.1 2.3
12 449.9 1.5
13.8033 399.8 1.1
15 373.8 1.0
17 341.91 0.82
18.689 319.86 0.70
20 307.24 0.64
24.5561 273.84 0.47
30 248.75 0.37
35 233.56 0.31
40 222.08 0.27
50 205.75 0.21
63.15 190.87 0.17
75 180.81 0.15
83.806 174.59 0.14

100 164.84 0.12
120 155.06 0.10
140 146.846 0.092
170 136.791 0.082
200 128.427 0.074
223.152 122.916 0.070
235 120.266 0.068
250 117.223 0.067
273.16 112.847 0.064
293.15 109.426 0.062
302.915 107.822 0.062
325 104.493 0.060
350 100.997 0.058
375 97.793 0.057
400 94.837 0.056
429.75 91.598 0.055
450 89.552 0.054
500 84.934 0.053
550 80.885 0.051
600 77.285 0.050
650 74.039 0.050
700 71.104 0.049
750 68.427 0.048
800 65.994 0.048
900 61.661 0.047
1000 57.949 0.047
1200 51.857 0.046
1400 47.039 0.045
1600 43.114 0.045
1800 39.842 0.044
2000 37.063 0.044
2500 31.615 0.043
3000 27.610 0.042
4000 22.039 0.041
5000 18.317 0.039
7500 12.765 0.036
10000 9.664 0.034

T C U(C)
(K) (cm6 ⋅ mol–2) (cm6 ⋅ mol–2)

Table 2. Third acoustic virial coefficients expressed as RTγa for 4He
calculated by PIMC and our estimates of their expanded (k = 2)
uncertainties U(C). Also shown are values calculated from the C(T )
correlation Eq. (22)

T RTγa (PIMC) U(RTγa) RTγa (Eq. 22)
(K) (cm6 ⋅ mol–2) (cm6 ⋅ mol–2) (cm6 ⋅ mol–2)

3 - - –13335.
4 - - –5250.
5 - - –2124.
6 - - –681.
7 - - 57.
8 - - 458.
9 - - 682.

10 - - 807
12 - - 906.
14 - - 914.
16 - - 885.
18 - - 843.
20 736. 83. 796.
24.5561 715. 51. 695.
30 590. 34. 592.
40 455. 18. 454.
50 366. 12. 360.
63.15 269.9 7.8 276.4
75 222.9 6.0 223.9
83.806 192.9 4.8 193.9

100 152.7 3.3 151.9
120 113.4 2.8 115.4
140 88.0 2.2 89.3
170 62.4 1.8 61.9
200 42.8 1.4 43.1
223.152 32.3 1.2 32.3
235 27.8 1.1 27.6
250 22.5 1.1 22.4
273.16 15.82 0.88 15.61
293.15 10.18 0.93 10.71
302.915 8.18 0.79 8.59
325 3.90 0.75 4.32



The uncertainty in the path-integral calculation of γa

becomes quite large at low temperatures, which is why
PIMC values at lower temperatures are not reported
in Table 2. This is due to the statistical uncertainty
of the Monte Carlo integration for L; the convergence
behavior of this integration is much worse than that for
C(T ). The reason for this difference is not completely
clear, but it may be due to the fact that the quantity
a that is averaged in the calculation of dC/dT [see
Eq. (15)] is the so-called thermodynamic estimator of
the kinetic energy. This estimator is known to be
characterized by a large variance, and therefore long
computations are needed to evaluate its average value
with small uncertainty [16]. Moreover, the second
temperature derivative needed for calculation of the
acoustic virial coefficients might add further statistical
noise to the calculation.

It is also possible to calculate γa from a correlation of
C(T ), as given in Sec. 4.4, by differentiating the
correlation to produce dC/dT and d2C/dT 2 as required
in Eq. (11). The quantities involving B can again be
obtained from the work of Cencek et al. [9]. Values
of RTγa calculated in this manner are also shown in
Table 2. They are consistent with the values calculated
directly by PIMC.

4.3 Uncertainty Analysis

The analysis of uncertainty in C(T ) was similar but
not identical to that described in Ref. [4]. The con-
tributing factors are the uncertainty in the pair poten-
tial, the uncertainty in the three-body potential,
and the uncertainty in the convergence of the PIMC
calculation.

The standard uncertainty due to PIMC convergence
was estimated as the standard deviation of the mean
from the 256 independent Monte Carlo runs.

The contributions due to the uncertainties in the
potentials were evaluated by calculating C(T ) with
perturbed upper- and lower-bound versions of the
potentials as described in Sec. 2. In order to avoid noise
introduced by the PIMC convergence uncertainty, these
calculations were performed with the semiclassical
method described in Sec. 3.1 of Ref. [4], which was
shown to be fairly accurate down to about 50 K. This
approach to estimating uncertainty is adequate even at
lower temperatures where the semiclassical values of
C(T ) are no longer very accurate, since the needed
quantity is not C(T ) itself but rather the difference
between C(T ) calculated from the upper perturbed
potential and C(T ) calculated from the lower perturbed
potential.

Below 20 K, the semiclassical results deviate suffi-
ciently from reality that we no longer trust them for
uncertainty analysis. Instead, we observe that the
uncertainty due to the potentials increases slowly and
smoothly as the temperature is reduced, while the
statistical uncertainty of the PIMC calculation increas-
es more quickly. Because of these trends, the contribu-
tion of the potential uncertainty, which is our largest
uncertainty component above 40 K, is roughly 60 % as
large as the PIMC convergence component at 20 K. It
is reasonable to assume that this trend continues, so that
the uncertainty from the potentials will be less than
60 % of that from the PIMC convergence at lower
temperatures. Therefore, we make the conservative
estimate that the potential component of the uncertain-
ty is 60 % of that from the PIMC convergence at all
temperatures below 20 K.

The last column of Table 1 shows the resulting
expanded uncertainties U(C) with coverage factor
k = 2. For purposes of illustration, we summarize the
uncertainty calculation for the point at 273.16 K.
The standard uncertainty of the PIMC integration
is 0.0069 cm6 · mol–2. The standard uncertainty due
to the uncertainty of the two-body potential is
0.0042 cm6 · mol–2 (1/4 of the difference between C(T ) 
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350 0.07 0.73 0.25
375 –3.90 0.65 –3.19
400 –6.03 0.57 –6.12
429.75 –9.27 0.52 –9.06
450 –11.39 0.50 –10.79
500 –14.19 0.46 –14.31
550 –17.65 0.40 –17.02
600 –19.31 0.43 –19.12
650 –20.90 0.36 –20.79
700 –21.93 0.34 –22.11
750 –22.93 0.32 –23.17
800 –23.98 0.32 –24.02
900 –25.27 0.26 –25.26
1000 –26.28 0.25 –26.07
1200 –26.99 0.23 –26.87
1400 –27.13 0.21 –27.07
1600 –27.13 0.19 –26.96
1800 –26.77 0.18 –26.68
2000 –26.40 0.17 –26.30
2500 –25.24 0.14 –25.19
5000 –20.27 0.11 –20.25
10000 –14.58 0.09 –14.72

Table 2. (Continued))

T RTγa (PIMC) U(RTγa) RTγa (Eq. 22)
(K) (cm6 ⋅ mol–2) (cm6 ⋅ mol–2) (cm6 ⋅ mol–2)



calculated semiclassically with the upper- and
lower-bound pair potentials, with the three-body
potential of Ref. [11] used in each case). The standard
uncertainty due to the three-body potential, computed
analogously with perturbed three-body potentials, is
0.0311 cm6 · mol–2. These are combined in quadrature
to yield a standard uncertainty u(C) = 0.0321 cm6 · mol–2,
which when multiplied by two yields an expanded
uncertainty U(C) of 0.064 cm6 · mol–2.

The uncertainty in the acoustic third virial coeffi-
cient, shown in Table 2, is computed analogously. In
this case, the analysis is less rigorous because the per-
turbed potentials do not necessarily define upper and
lower bounds for the temperature derivatives of C that
contribute to γa . However, at all but the highest temper-
atures (above 2000 K), the uncertainty in γa is dominat-
ed by the convergence uncertainty in the PIMC calcu-
lations, so the expanded uncertainties shown in Table 2
should be good estimates.

4.4 Correlation for Results

We correlated the results for C(T ) in Table 1 as a
function of temperature:

(22)

where T* = T/(100 K) and the parameters ai and bi are
given in Table 3. Equation (22) reproduces the values
in Table 1 within tolerances smaller than their expand-
ed uncertainties U(C); the fit is much closer than U(C)
at high temperatures where the uncertainty is dominat-
ed by the Type B contribution from the uncertainty of
the potentials. It covers the entire range from 2.6 K to
10 000 K, but should not be extrapolated outside this
range. It may be differentiated to obtain dC/dT and
d2C/dT 2, which can be used for calculation of acoustic
virial coefficients as discussed in Sec. 4.2.

It is also convenient to have a continuous function
for the expanded uncertainty U(C). This will naturally
be approximate, as there is significant noise in the
uncertainties given in Table 1. U(C) can be represented
reasonably well as a function of temperature over the
entire range of Table 1 by

(23)

where τ = log10 (T/K).

4.5 Comparison With Experiment for C(T )

Extensive comparisons with experimental C(T ) data
were given in Ref. [4], demonstrating that the uncer-
tainties of calculated C(T ) were much smaller than
those obtained from experiment. Since our new values
are within the expanded uncertainties of those calcu-
lated previously, we do not repeat all the comparisons
because the figures would look nearly identical to those
in Ref. [4]. Instead, we limit our comparisons to the
important range near room temperature and to the low-
temperature range that was not covered in Ref. [4].

In Fig. 1, our results are compared to those from the
two most widely used experimental sources for C(T )
[17,18] at temperatures from 250 K to 325 K. The error
bars on the experimental points represent expanded
uncertainties with coverage factor k = 2, while the
expanded uncertainties on our calculated points (see
Table 1) are smaller than the size of the symbols. Our
calculations are fully consistent with the experimental
data, but have smaller uncertainties by factors of
approximately 50.

In Fig. 2, we compare our calculated C(T ) with the
available experimental data below 40 K [19-24]. Error
bars drawn on the points from this work represent
expanded uncertainties U(C) from Table 1; they are not
drawn above 5 K because they would be smaller than
the size of the symbols. For clarity, we do not draw
error bars for the experimental points; in some sources
[19,20] these were not reported and in the others they
were usually quite large (on the order of hundreds of
cm6 · mol–2 ), often extending off the scale of Fig. 2.
Gaiser et al. [24] described their data obtained by
dielectric-constant gas thermometry from 3.7 K to 36 K
with a smooth function for C(T ), which we show as
a dashed line on Fig. 2. From a figure in Ref. [24],
it appears that their expanded (k = 2) uncertainties
would be on the order of 20 cm6 · mol–2 over most of
this range, becoming somewhat larger at the lowest
temperatures.
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Table 3. Coefficients for Eq. (22) for the third virial coefficient of
helium

i ai bi

1 177.98 –0.15
2 –494.87 –0.25
3 849.84 –0.50
4 –1003.30 –0.95
5 635.18 –1.07
6 –0.035 012 –3.15



Our results are generally consistent with the older
experimental sources [19-23] within their scatter and
uncertainties. We are for the most part in good agree-
ment with the recent results of Gaiser et al. [24], with
moderate disagreement at the low end of their temper-
ature range. To examine this more closely, in Fig. 3 we
plot the difference between the function of Gaiser et al.
and our results as correlated by Eq. (22); Fig. 3 also
shows our calculated PIMC points to demonstrate that
Eq. (22) reproduces our results within their uncertain-
ties. Our results agree with Gaiser et al. within mutual

expanded uncertainties except between approximately
4 K and 8 K. It is possible that the functional form
assumed for C(T ) by Gaiser et al. [24] is not the right
shape to represent this system.

4.6 Comparison With Experiment for γγa

In this section, we compare our results for RTγa

with measurements spanning the temperature range
3 K to 423 K. In this range, RTγa has a strong temp-
erature dependence; it increases from approximately
–13 000 cm6 · mol–2 at 3 K to approximately 900 cm6 · mol–2

near 14 K and then decreases to –9 cm6 · mol–2 at 423 K.
Throughout most of this range, the uncertainty of our
PIMC values of RTγa is on the order of 0.5 % to 3 %.
Because of the wide range and precision required, we
do not compare our results with measurements on a
conventional graph. Instead, we have plotted the
quantity 10–3(T/K)1.5 × RTγa , where the exponent
1.5 was chosen so that the range of the product
10–3(T/K)1.5 × RTγa in the interval from 3 K to 423 K
is much smaller than the range of RTγa (see Fig. 4).

We examined the speed-of-sound data for 4He pub-
lished in archival journals and found three publications
from which we could determine accurate values of γa

[25-27]. Remarkably, the most recent of these publica-
tions is 35 years old. Thus, these studies did not bene-
fit from the dramatic reduction in the uncertainty of
speed-of-sound measurements that acoustic thermo-
metry has achieved during the past 20 years [3, 28-30].

Gammon [25] measured the speed of sound of
4He on 14 isotherms spanning the temperature range
98 K to 423 K at intervals of 25 K and spanning the
pressure range 10 atm to 150 atm at intervals of 10 atm
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Fig. 1. Comparison of C(T ) for 4He calculated in this work with
experimental values at near-ambient temperatures. Error bars on
experimental points represent expanded uncertainties with coverage
factor k = 2; uncertainties for this work (see Table 1) are not shown
because the error bars would be smaller than the symbols.

Fig. 2. Comparison of C(T ) for 4He calculated in this work with
experimental values at low temperatures. Error bars on calculated
points represent expanded uncertainties with coverage factor k = 2
(see Table 1), and are not shown when they would be smaller than the
symbol size. Uncertainties for experimental points are not shown for
clarity (see text).

Fig. 3. Deviation of PIMC results and of low-temperature C(T ) data
of Gaiser et al. [24] from fitted C(T ) as given by Eq. (22).



(1 atm = 0.101 325 MPa). Gammon correlated his data
using a classical model He-He pair potential. From his
correlation, he identified the isotherm at 348 K and 10
other isolated measurements as outliers. We ignored
Gammon’s isolated outliers and fit the remaining data
on each isotherm, including 348 K, with the function 

(24)

In Eq. (24), we define Za ≡ Mu2 / (γ0RTlab ) as the
square of the speed of sound divided by its ideal-gas
value, and we calculated it from Gammon’s tabulated
values of u2. The values of Za have the narrow range
1 to 1.38; therefore, we weighted every data point on
each isotherm equally. We took βa from Cencek et al.
[9], and we fitted the parameters T/Tlab , γa / (RTlab ), and,
when they are statistically unequal to zero, δa / (RTlab )
and εa / (RTlab ). [Here, T is the thermodynamic tempera-

ture of each isotherm and Tlab is the temperature
reported by Gammon after adjustment for the changes
in the internationally accepted temperature scale. The
parameter T/Tlab also accounts for possible changes in
M /γ0 that would occur if there were impurities in
the helium.] Seven of Gammon’s 14 isotherms (98 K,
148 K, 173 K, 198 K, 248 K, 273 K, and 373 K) were
very well behaved; that is, the deviations from a fit 
with  an appropriate number of terms had no obvious
pressure dependence. The standard deviation of
Za – β ap / (RTlab ) from the fits, averaged over these
isotherms, was 0.000 014. For the remaining isotherms,
the deviations from the fits are neither random nor have
single, outlying points. Therefore, we are unable to
rigorously estimate the uncertainties of γa /RT. [We
confirmed Gammon’s identification of the 348 K
isotherm as anomalous because a satisfactory fit
required the term δa p3/ (RTlab ) even though the
adjacent isotherms (323 K and 373 K) did not.] For the
13 isotherms (excluding 348 K), we estimated the
standard uncertainty u (γa /RT) by multiplying the result
of the fitting routine by (χ 2/N)1/2, where N is the
number of degrees of freedom and χ 2 is the sum of the
squares of the deviations of the data from the function
fitted to it. All of the tabulated (Table 4) uncertainties
reflect multiplication of u (RTγa ) by an additional factor
of two to approximate a 95 % confidence limit.

The values of RTγa and their expanded uncertainties
U(RTγa ) resulting from fitting Gammon’s data are dis-
played in Fig. 4 and Table 4. Our calculations and
Gammon's data agree within combined uncertainties,
even though Gammon’s values of RTγa are more
negative than our calculated values near the upper end
of his temperature range. The uncertainties from fitting
acoustic data will be underestimated if they do not
account for the bias introduced by truncating the virial
expansion. We crudely estimate the effect of truncation
by comparing the 2nd and 4th columns in Table 4.
For Gammon’s isotherms at 98 K, 123 K, 148 K, and
173 K, Table 4 compares RTγa obtained with and
without the term εa p4 / (RTlab ) in Eq. (24). The two
values of RTγa agree within combined uncertainties.
Table 4 also compares values of RTγa obtained with and
without the term δa p3/ (RTlab ) on the isotherms 198 K
through 298 K. Except at 298 K, the two values of RTγa

on each isotherm are mutually consistent. Above
298 K, δa was zero, within its uncertainty; however, the
values of RTγa could be influenced by contributions
from δa. We verified that the uncertainties of the values
of a βa from Cencek et al. [9] did not contribute signif-
icantly to the uncertainty of γa .
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Fig. 4. Comparison with experimental results of third acoustic virial
coefficients γa for 4He calculated in this work both directly with path-
integral Monte Carlo (PIMC), and with γa calculated with the use of
derivatives of the C(T ) correlation Eq. (22).
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Plumb and Cataland [27] measured the speed of
sound in 4He on 21 isotherms from 2.3 K to 20 K for
the purpose of determining the thermodynamic
temperature T. As is often done in acoustic thermo-
metry, Plumb and Cataland deliberately restricted their
data to low densities; therefore, they were unable to
determine meaningful values of γa . Because we have βa

from Cencek et al. [9], we were able to determine
values of γa on all of the isotherms except those at 5 K,
2.8 K, and 2.3 K. For each isotherm, the values of δa

and εa in Eq. (24) were set equal to zero, and the data
were weighted equally. The results are displayed on
Fig. 4 and in Table 5.

Grimsrud and Werntz [26] measured the speed
of sound in 4He on eight isotherms from 2.13 K to
3.816 K. They fitted their data by, in effect, adjusting
T/Tlab , βa , and γa . When analyzing their data, we
weighted each measurement using the uncertainties
that they tabulated. Because we fixed values of βa from
Cencek et al. [9], we were able to determine values of
γa with roughly 1/5 the uncertainty achieved by
Grimsrud and Werntz. These values are also shown in
Table 5 and on Fig. 4. The values of RTγa from
Grimsrud and Werntz are systematically more
negative than our calculated values, particularly at the
lowest temperatures where, for reasons discussed in the
next section, the measurements may be more accurate
than our calculations.

In the narrow region of overlap, the data of Grimsrud
and Werntz [26] are consistent with the data of Plumb
and Cataland [27]. As the temperature decreases, both
sets of data tend towards values of RTγa smaller than
those derived from our Eq. (22).

Additional values for γa derived from acoustic exper-
iments between 2.3 K and 34 K were reported in a
conference proceeding by Plumb [31]. Unfortunately,
the actual measured data were never reported, so we
were not able to apply new high-accuracy values of βa

[9] to obtain values of γa consistent with the best
current knowledge, as we did for Refs. [25-27]. We
therefore do not show the data from Ref. [31] in Fig. 4,
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Table 4. Third acoustic virial coefficient for 4He and its expanded
(k = 2) uncertainty from the data of Gammon [25], excluding the
isotherm at 348 K. Asterisks indicate fits including additional terms,
as discussed in the text

T RTγa U(RTγa ) (RTγa )* [U(RTγa )]*

K cm6·mol–2 cm6·mol–2 cm6·mol–2 cm6·mol–2

98.15 153.2a 1.0 155.1b 2.5
123.16 106.0a,c 6.3 115.3b 10.5
148.16 77.5a 1.0 80.7b 2.5
173.16 57.8a 2.1 57.9b 8.0
198.16 32.4 4.1 42.8a 1.6
223.16 22.4 2.3 27.0a 10.2
248.16 17.1 0.9 20.9a 3.7
273.15 8.2 1.3 13.8a 5.3
298.15 7.3 6.9 21.2a 27.4
323.13 0.4 4.7
373.13 –3.8 11.9
398.15 –13.5 40.5
423.15 –10.4 26.0

a Fit included the term δa p3 / (RTlab).
b Fit included the terms δa p3 / (RTlab) and εa p4 / (RTlab).
c Not recommended.

Table 5. Third acoustic virial coefficient for 4He and its expanded
(k = 2) uncertainty from the data of Grimsrud and Werntz [26] and
from Plumb and Cataland [27]

T RTγa U(RTγa )

K cm6·mol–2 cm6·mol–2

Grimsrud and Werntz [26]
3.816 –7100 440
3.595 –9300 700
3.379 –14800 790
3.337 –10600 3000
3.182 –15000 1400
2.978 –16400 1300
2.671 –19500 4300
2.13 –46000 7500

Plumb and Cataland [27]
20 770 400
18.9 840 560
18 1180 240
17 1070 270
16 940 190
15 1140 260
14.6 1260 160
14 1070 210
13 1050 100
12 820 140
10.9 970 110
9.9 854 75
9 780 170
8.1 190 300
7 30 530
6.1 –990 260
4.2 –4740 910
3.2 –12400 1800
5 1400 5100



but we  note that the reported values of γa are general-
ly consistent with our calculated values within the
reported uncertainties of Ref. [31]. Our calculated
values are also consistent within mutual uncertainties
with a recent experimental result for γa at 273.16 K by
Gavioso et al. [32].

4.7 Results for 3He
While the primary focus of this work was on the

common isotope 4He, the same methods can be used for
3He, which is of interest for cryogenic temperature
metrology. Table 6 presents values of C(T) for 3He,
along with their expanded uncertainties. More extensive 

discussion of the 3He calculations at low temperatures,
along with comparison with the limited experimental
data, is given in Ref. [12]. We note that, in
addition to the data sources below 10 K examined in
Ref. [12], values of C(T ) for 3He between 14 K and
60 K were reported by Karnus [20]; these seem to be
systematically high below about 30 K, similar to the
data for 4He from the same study shown in Fig. 2.

For the same reason discussed for 4He in Sec. 4.1, the
values in Table 6 differ slightly from those reported
in Ref. [12], and the new values in Table 6 should be
preferred.

4.8 Accuracy of Semiclassical Calculations
In Ref. [4], we assessed the accuracy of a first-order

semiclassical calculation of C(T ), concluding that the
semiclassical results were adequate (in the sense of
reproducing the fully quantum C(T ) from PIMC calcu-
lations within their expanded uncertainties at the k = 2
level) at temperatures above about 120 K. That conclu-
sion can be reassessed in light of the reduced uncertain-
ties achieved in this work. The semiclassical C(T ) devi-
ates from our new PIMC results by more than the
expanded uncertainty of our new results at tempera-
tures below about 280 K. For example, at 273.16 K, the
semiclassical calculation yields 112.939 cm6 · mol–2,
which exceeds the PIMC value by slightly more than
the expanded uncertainty given in Table 1.

5. Discussion

The availability of new, state-of-the-art pair and
three-body potentials has allowed us to calculate C(T )
for helium with uncertainties approximately one-fourth
that of our previous work [4]. In addition, we have
extended the temperature range of our results, which
previously had a lower bound of 24.5661 K, to 2.6 K.
We also calculated C(T ) for the 3He isotope. The incor-
poration of exchange effects (non-Boltzmann statistics)
was necessary to achieve accurate results for both
isotopes below about 7 K.

Within the temperature range covered in our previ-
ous work [4], our new results given in Table 1 are con-
sistent with our previous results. The present C(T ) are
somewhat higher than those calculated previously,
typically by an amount near one-half of the expanded
(k = 2) uncertainties of the results in Ref. [4]. This
change is primarily due to the more accurate three-body
potential used here [11], and is consistent with a few
preliminary calculations using the potential of Ref. [11]
that were reported in Ref. [4].
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T C U(C)

K cm6·mol–2 cm6·mol–2

Table 6. Third virial coefficients C(T ) for 3He calculated in this
work and our estimates (see Sec. 4.3) of their expanded (k = 2)
uncertainties U(C)

2.6 1343. 62.
2.8 1436. 46.
3 1464. 41.
3.2 1462. 36.
3.5 1418. 29.
3.7 1366. 27.
4.0 1298. 22.
4.2 1257. 19.
4.5 1175 16.
5 1071. 12.
6 895.0 9.1
7 775.6 6.6
8.5 644.9 4.4

10 553.7 3.4
12 475.3 2.4
13.8033 426.5 1.7
15 401.8 1.6
17 367.6 1.3
18.689 346.9 1.0
20 333.53 0.87
24.5561 296.76 0.67
30 268.91 0.52
35 251.22 0.41
50 218.56 0.26

100 170.63 0.13
150 146.71 0.10
200 130.762 0.081
273.16 114.365 0.068
300 109.627 0.065
400 95.707 0.058
500 85.563 0.054
750 68.758 0.049
1000 58.168 0.047
1500 45.083 0.045
2000 37.130 0.044



We extended the PIMC method to calculate the third
acoustic virial coefficient γa ; our results are consistent
with values of γa obtained from experimental acoustic
data, and have smaller uncertainties above 18 K.
However, the statistical uncertainty in the PIMC calcu-
lation of γa becomes quite large at lower temperatures.
We believe more reliable values are obtained by differ-
entiating Eq. (22) to obtain the temperature derivatives
of C and then using those values in Eq. (11). Values
derived in that way are consistent with experimental
results for γa in the entire range of our C(T ) correlation,
with the possible exception of the lowest temperatures
(below 4 K), where the experimental data lie slightly
below our results. One might expect this approach to be
less reliable at the low end of the temperature range of
Eq. (22), where the uncertainty in the points to which
the C(T ) function was fitted is larger and dC/dT and
d2C/dT 2 derived from Eq. (22) would have relatively
large uncertainties.

At low temperatures, the uncertainty of the present
results for C(T ) is dominated by the statistical uncer-
tainty of the PIMC integration. This could, of course,
be improved somewhat simply by applying more
computing resources. Above about 35 K, the uncertain-
ty from the three-body potential becomes the largest
contribution. Therefore, for metrology near room
temperature, further improvement in the three-body
potential would be desirable; a reduction in by a factor
of two in the uncertainty of the three-body potential
would produce a reduction by almost that factor in the
uncertainty of C(T ) at room temperature.

The present results could also be extended to lower
temperatures at the expense of more computer time.
This could have some application in primary thermo-
metry at these temperatures.

One could perform similar calculations for the
“cross” third virial coefficients that characterize iso-
topic mixtures; these would be C334(T ), representing
interactions among two 3He atoms and one 4He atom,
and the similarly defined C344(T ). Because the natural
abundance of 3He is tiny, contributions from these
coefficients would be insignificant for experiments
with naturally occurring helium. We are not aware of
any situation in metrology where these mixture coeffi-
cients would be useful, but, if needed, the extension of
the methods used here to the mixture coefficients
would be straightforward.

Another quantity of interest is the fourth virial coef-
ficient D(T ), whose calculation would be a straight-
forward extension of our methods. With the reduction
in the uncertainty of C(T ) achieved in the present work,

D(T ) will become the largest uncertainty in some
situations in metrology [7]. In principle, calculating
D(T ) requires not only pair and three-body potentials
but also the nonadditive four-body potential. Such a
potential would be difficult to develop, but the relative-
ly small size of the three-body effects in helium
suggests that one might be able to assume the nonaddi-
tive four-body effects were negligible. It should be
possible to test that assumption by performing a few
high-level ab initio calculations for simple assemblies
of four helium atoms (such as tetrahedrons or squares).
The calculation for D(T ) would require major comput-
ing resources because of the increased dimensionality
of the integral, but such a calculation may at least be
feasible near room temperature where the number of
beads in the ring polymers in the PIMC procedure
would be relatively small.

Acknowledgments

We thank K. Szalewicz and J. B. Mehl for providing
information (in some cases prior to publication) on the
helium pair potential and properties calculated from it,
C. Gaiser for advice on helium C(T ) data at low
temperatures, K. R. Shaul and D. A. Kofke for perform-
ing classical calculations that helped us discover a
small error in our previous work, and E. W. Lemmon
for fitting Eq. (22). The path-integral Monte Carlo
calculations were performed on the computing cluster
KORE at Fondazione Bruno Kessler.

6. References

[1] J. W. Schmidt, R. M. Gavioso, E. F. May, and M. R. Moldover,
Polarizability of Helium and Gas Metrology, Phys. Rev. Lett.
98, 254504 (2007).

[2] B. Fellmuth, Ch. Gaiser, and J. Fischer, Determination of the
Boltzmann Constant—Status and Prospects, Meas. Sci.
Technol. 17, R145 (2006).

[3] L. Pitre, M. R. Moldover, and W. L. Tew, Acoustic thermo-
metry: new results from 273 K to 77 K and progress towards
4 K, Metrologia 43, 142 (2006).

[4] G. Garberoglio and A. H. Harvey, First-Principles Calculation
of the Third Virial Coefficient of Helium, J. Res. Natl. Inst.
Stand. Technol. 114, 249 (2009).

[5] J. J. Hurly and J. B. Mehl, 4He Thermophysical Properties:
New Ab Initio Calculations, J. Res. Natl. Inst. Stand. Technol.
112, 75 (2007).

[6] W. Cencek, M. Jeziorska, O. Akin-Ojo, and K. Szalewicz,
Three-Body Contribution to the Helium Interaction Potential, J.
Phys. Chem. A 111, 11311 (2007).

[7] M. R. Moldover and M. O. McLinden, Using Ab Initio “Data”
to Accurately Determine the Fourth Density Virial Coefficient
of Helium, J. Chem. Thermodyn. 42, 1193 (2010).

Volume 116, Number 4, July-August 2011
Journal of Research of the National Institute of Standards and Technology

741



[8] M. Przybytek, W. Cencek, J. Komasa, G. L/ ach, B. Jeziorski, and
K. Szalewicz, Relativistic and Quantum Electrodynamics
Effects in the Helium Pair Potential, Phys. Rev. Lett. 104,
183003 (2010).

[9] W. Cencek, M. Przybytek, J. Komasa, J. B. Mehl, B. Jeziorski,
and K. Szalewicz, Effects of adiabatic, relativistic, and quan-
tum electrodynamics interactions in helium dimer on thermo-
physical properties of helium, J. Chem. Phys., to be submitted
(2011).

[10] M. Jeziorska, W. Cencek, K. Patkowski, B. Jeziorski, and
K. Szalewicz, Pair potential for helium from symmetry-
adapted perturbation theory calculations and from super-
molecular data, J. Chem. Phys. 127, 124303 (2007).

[11] W. Cencek, K. Patkowski, and K. Szalewicz, Full-configura-
tion-interaction calculation of three-body nonadditive contribu-
tion to helium interaction potential, J. Chem. Phys. 131, 064105
(2009).

[12] G. Garberoglio and A. H. Harvey, Path-integral calculation of
the third virial coefficient of quantum gases at low tempera-
tures, J. Chem. Phys. 134, 134106 (2011).

[13] G. Garberoglio, Boltzmann bias grand canonical Monte Carlo,
J. Chem. Phys. 128, 134109 (2008).

[14] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman,
M. Booth, and F. Rossi, GNU Scientific Library Reference
Manual, Network Theory, revised 2nd edition (2006).
http://www.gnu.org/software/gsl.

[15] K. A. Gillis and M. R. Moldover, Practical Determination of
Gas Densities from the Speed of Sound Using Square-Well
Potentials, Int. J. Thermophys. 17, 1305 (1996).

[16] M. F. Herman, E. J. Bruskin, and B. J. Berne, On path integral
Monte Carlo simulations, J. Chem. Phys. 76, 5150 (1982).

[17] A. L. Blancett, K. R. Hall, and F. B. Canfield, Isotherms for the
He-Ar System at 50 °C, 0 °C and 50 °C up to 700 Atm, Physica
47, 75 (1970).

[18] M. O. McLinden and C. Lösch-Will, Apparatus for wide-rang-
ing, high-accuracy fluid (p,ρ,T) measurements based on a
compact two-sinker densimeter, J. Chem. Thermodyn. 39, 507
(2007).

[19] D. White, T. Rubin, P. Camky, and H. L. Johnston, The virial
coefficients of helium from 20 to 300 °K, J. Phys. Chem. 64,
1607 (1960).

[20] A. I. Karnus, Virial Coefficients and some Thermodynamic
Quantities of the Helium Isotopes in Low Temperature Range,
Ukr. Fiz. Zh. 21, 1179 (1976).

[21] K. H. Berry, Measurements of the second and third virial coef-
ficients of 4He in the range 2.6-27.1 K, Mol. Phys. 37, 317
(1979).

[22] D. Gugan and G. W. Michel, Measurements of the polarizabili-
ty and of the second and third virial coefficients of 4He in the
range 4.2-27.1 K, Mol. Phys. 39, 783 (1980).

[23] L. V. Karnatsevich, I. V. Bogoyavlenskii, and L. P. Titar, Virial
coefficients of helium isotopes at low temperatures, Sov. J.
Low Temp. Phys. 14, 1 (1988).

[24] C. Gaiser, B. Fellmuth, and N. Haft, Dielectric-Constant Gas-
Thermometry Scale from 2.5 K to 36 K Applying 3He, 4He, and
Neon in Different Temperature Ranges, Int. J. Thermophys. 31,
1428 (2010).

[25] B. E. Gammon, The velocity of sound with derived state prop-
erties in helium at –175 to 150 °C with pressure to 150 atm, J.
Chem. Phys. 64, 2556 (1976).

[26] D. T. Grimsrud and J. H. Werntz, Measurements of the Velocity
of Sound in He3 and He4 Gas at Low Temperatures with
Implications for the Temperature Scale, Phys. Rev. 157, 181
(1967).

[27] H. Plumb and G. Cataland, Acoustical Thermometer and the
National Bureau of Standards Provisional Temperature
Scale 2-20 (1965), Metrologia 2, 127 (1966).

[28] A. F. Estrada-Alexanders and J. P. M. Trusler, The speed of
sound in gaseous argon at temperatures between 110 K and
450 K and at pressures up to 19 MPa, J. Chem. Thermodyn. 27,
1075 (1995).

[29] G. Benedetto, R. M. Gavioso, R. Spagnolo, P. Marcarino, and
A. Merlone, Acoustic measurements of the thermodynamic
temperature between the triple point of mercury and 380 K,
Metrologia 41, 74 (2004).

[30] D. C. Ripple, G. F. Strouse, and M. R. Moldover, Acoustic
Thermometry Results from 271 K to 552 K, Int. J.
Thermophys. 28, 1789 (2007).

[31] H. H. Plumb, 4He second and third virial coefficients from
acoustical isotherms: The Helmholtz-Kirchhoff correction at
temperatures below 35 K, in Temperature: Its Measurement
and Control in Science and Industry, vol. 5, J. F. Schooley, Ed.
(American Institute of Physics, New York, 1982), Part 1, pp.
77-88.

[32] R. M. Gavioso, G. Benedetto, D. Madonna Ripa, P. A. Giuliano
Albo, C. Guianvarc’h, A. Merlone, L. Pitre, D. Truong,
F. Moro, and R. Cuccaro, Progress in INRiM Experiment for
the Determination of the Boltzmann Constant with a Quasi-
Spherical Resonator, Int. J. Thermophys. 32, 1339 (2011).
doi:10.1007/s10765-011-1032-9.

About the authors: Giovanni Garberoglio is a physi-
cist and a member of the Interdisciplinary Laboratory
for Computational Science (LISC), a collaboration
between Fondazione Bruno Kessler and the University
of Trento, Italy. Michael Moldover is a physicist and a
NIST Fellow; he is the Leader of the Fluid Metrology
Group in the Temperature, Pressure, and Flow
Metrology Division of the NIST Physical Measurement
Laboratory. Allan Harvey is a chemical engineer in the
Theory and Modeling of Fluids Group in the
Thermophysical Properties Division of the NIST
Material Measurement Laboratory. The National
Institute of Standards and Technology is an agency of
the U.S. Department of Commerce.

Volume 116, Number 4, July-August 2011
Journal of Research of the National Institute of Standards and Technology

742


