

NFORMATION ECHNOLOGY ABORATORY

Characterization of the "Size and Shape" of Static RPKI

Okhee Kim, K. Sriram, Oliver Borchert, and Doug Montgomery

Contact: {okim, ksriram, borchert, dougm}@nist.gov

December 7, 2010

Outline

- Goals
- Methodology
- Quantitative analysis of the current resource allocations
- Characterization of static RPKI
- Conclusions

NIST's Goals

- Develop models of the "size and shape" of a potential global RPKI structure from existing RIR/IRR databases.
- Provide quantitative analyses of the scalability and the potential performance impact of global-scale deployed RPKI on routing dynamics.
- Study the potential future changes in routing information infrastructure.
- Evaluate how such issues as IPv4 address exhaustion will impact on the deployed RPKI.
- Assess the potential load and weaknesses of the "moving parts" of the proposed RPKI infrastructure.

Methodology (1 of 2)

Use NIST TERRAIN DB data:

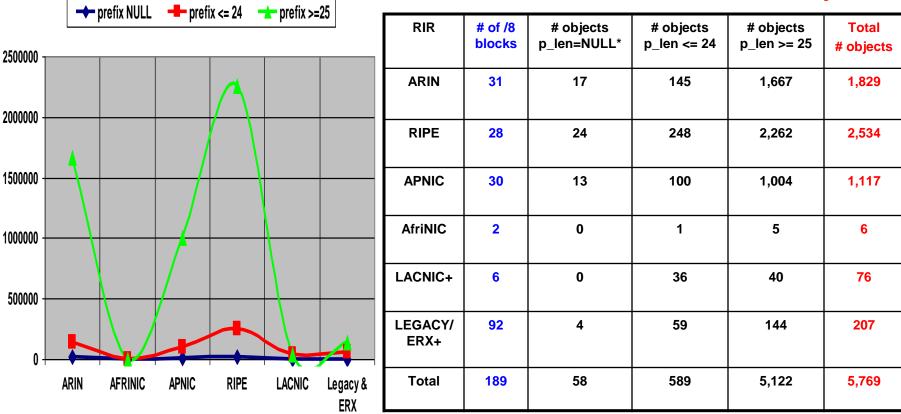
- Global bulk Whois databases:
 - * 5 RIRs and IRRs from the RADB site.
- BGP trace data:
 - * RIPE NCC and Route Views.

Develop models of the potential global RPKI infrastructure:

- Select all distinctively registered objects.
- For multiple registrations across RIRs:
 - * Select one from a RIR where the resource is allocated to, if exists.
 - * If not, select one arbitrarily among RIRs/IRRs.
 - * For APNIC, the same resource may be registered in different registries such as RIR and/or NIR. In this case, select one that contains the "status:" attribute.
- Build number resources (IPv4 and ASN) structures describing allocation chains.
- Classify selected objects per region based on IANA allocation registries:
 - * ARIN / RIPE / APNIC / AFRINIC / LACNIC / LEGACY / ERX.

Methodology (2 of 2)

- Details of building number resources structures:
 - ASNs:
 - * For SWIP:
 - Distinct ASHandles.
 - Distinct ASNs (aut-nums) registered in RPSL (i.e., aut-num), which are assigned to ARIN but not registered in SWIP (as either a single ASN or AS range).
 - * For RPSL:
 - Unique aut-nums.
 - as-block objects that contain a range of ASNs in RPSL. Note that some as-blocks contain a single ASN (e.g., ASn – ĂSn), most of which have corresponding either autnum or ASHandle objects.
 - IPv4 addresses:
 - Globally distinct inetnums in RPSL and NetRanges in SWIP.
 - For multiple registrations, select one from a RIR where the resource is allocated to, if exists.
 - If not, select one arbitrarily among RIRs/IRRs.
 - Partial registrations from a /8 block may be found in other RIRs but they are considered to belong to the same RIR where the /8 is allocated
 - Exceptions in LEGACY/ERX IP address space:
 - The LEGACY/ERX blocks may contain a large number of cross-RIR partial allocations, especially between RPSL and SWIP. These partial allocations are combined before processing.
 - Example: If 129.1/16 registered in RIPE (RPSL) and 129.2/16 registered in ARIN (SWIP), then both 129.1/16 and 129.2/16 are considered as LEGACY/ERX. 5

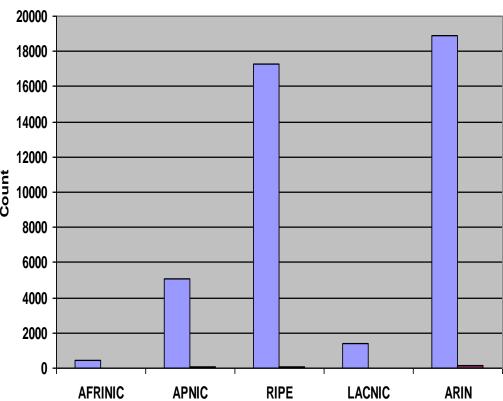

ERX Partial Allocations Examples

- 129/8: currently administered by ARIN:
 - Partial allocations in SWIP: 396
 - Partial allocations in RPSL: 592
 - Multi registrations in both SWIP and RPSL: 30
- 151/8: currently administered by RIPE NCC:
 - Partial allocations in RPSL: 6,999
 - Partial allocations in SWIP: 2,084
 - Multi registrations in both SWIP and RPSL: 15
- 198/8: currently administered by ARIN
 - Partial allocations in RPSL: 320
 - Partial allocations in SWIP: 15,760
 - Multi registration in both SWIP and RPSL: 63

Distribution of Registry IPv4 Address Allocations/Assignments

Registry data date: 2009-02-18

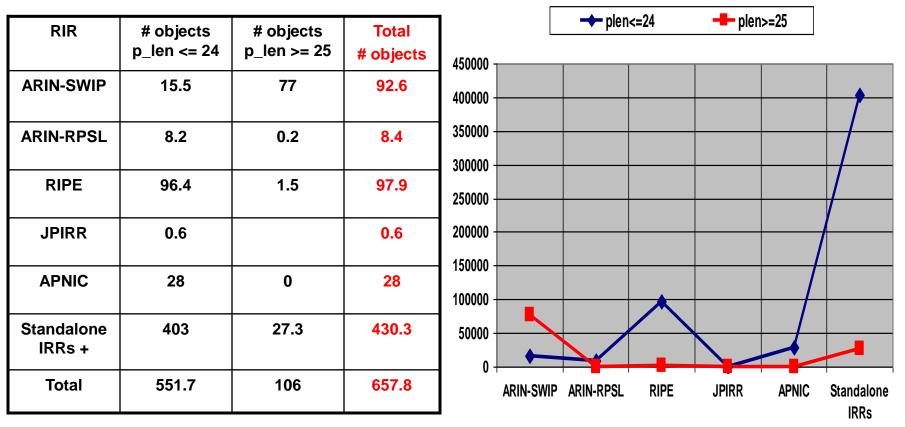
Unit: 1k objects


* Prefix Length NULL indicates that an address block cannot be represented by a single CIDR.
+ from both RPSL and SWIP except duplicates.
7 As of August 2010, 14 /8 blocks are unallocated.

Distribution of Global ASN Assignment Based on IANA and RIR/IRR Datasets

Registry data date: 2009-02-18

■ AS_single ■ AS_block

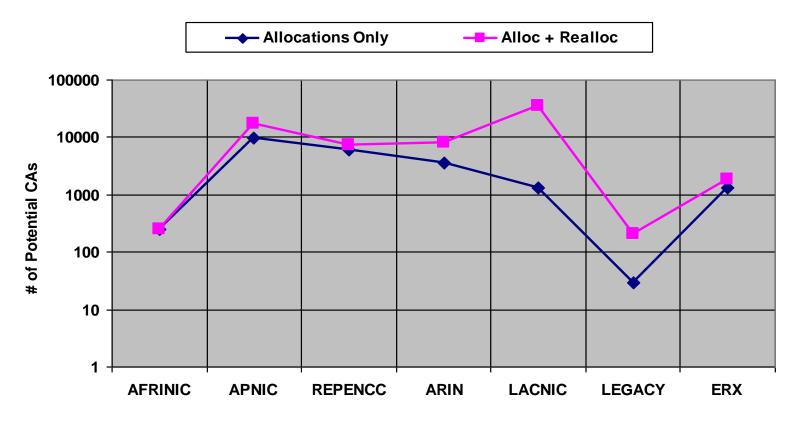

			- 2
RIR	AS single	AS block	18
ARIN	18,862	137	10
RIPE	17,280	59	14
APNIC	5,082	70	1:
AfriNIC	406	4	Count Count
LACNIC	1,391	2	
Total	43,021	272	 ,

Distribution of Potential ROAs Based on Route Object Registrations

Registry data date: 2009-02-18

Unit: 1k objects

+ Standalone IRRs includes all individual IRRs mirrored from the RADB site.

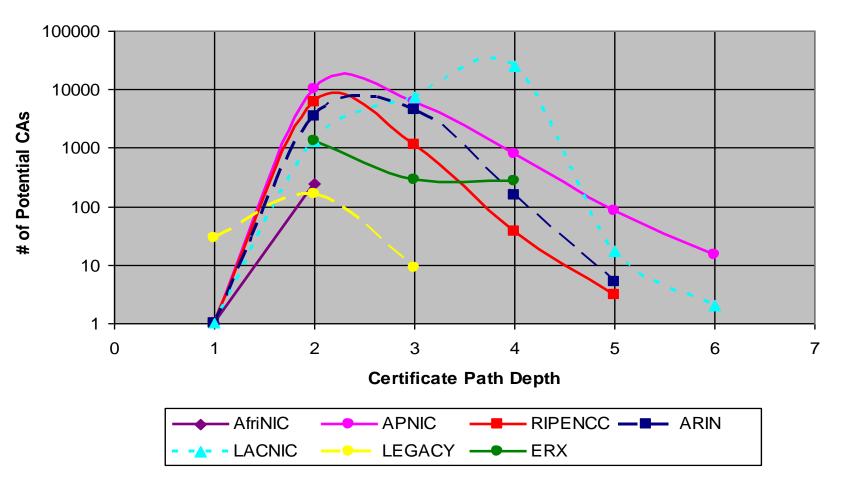

Characterization of the of static RPKI

- Analysis of potential CAs:
 - Distribution of potential CAs per RIR
 - Distribution of CA path depths per RIR
- Analysis of IPv4 certificates:
 - Full deployment vs. optimized deployment
 - IPv4 prefix lengths vs. IPv4 certification path depths
- Analysis of ROAs:
 - The cost estimate of ROA verifications in terms of certification path lengths
 - Distribution of PI address space.
 - Analysis of MOASes of potential ROAs

Potential CAs

- Selection criteria:
 - Resource allocation objects:
 - inetnums in RPSL.
 - NetHandles in SWIP.
 - Attributes contained in an object to identify the allocation type:
 - "status:" in inetnum.
 - * "NetType:" in NetHandle.
 - Status/NetType Attribute values: Allocation, Re-allocation
 - First consider "Allocation" ONLY (including both PA and PI)
 - * Then consider "Allocation" and "Re-allocation"
 - Five top level CAs: ARIN, RIPE NCC, APNIC, LACNIC, AfriNIC in addition to IANA
 - For blocks with prefix length <= 8, the certificates are created by the RIRs
 - For these blocks, the RIRs are the CAs
 - Eliminate also objects whose size < 255 (i.e, more specific than /24)
- Algorithm for selecting potential CAs:
 - Legacy:
 - If Org of an object is uniquely defined and the object is either
 - Direct assignment (/8) to an organization; OR
 - Allocation to an ISP under Legacy space (e.g., 4/8 and 8/8 are allocated to Level 3 Comm).
 - Regular allocations and ERX:
 - If Org of an object is uniquely defined AND the object is allocation (or, reallocation) regardless of the allocation depths

Distribution of Potential CAs per RIR



- # of potential global CAs (allocations only): ~22.4K
- # of potential global CAs (alloc + realloc): ~69.1K

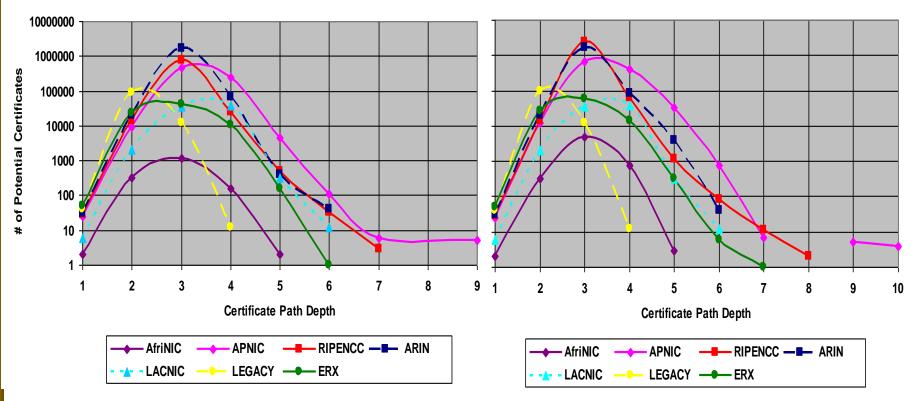
• Note that AfriNIC, APNIC and RIPE NCC do not have the value "re-allocation". Hence, the first level of direct allocations by these RIR is considered as "Allocation Only".

Note also that some objects do not contain "org:" attribute, especially for the regions such as RIPE NCC and APNIC.

Distribution of Certificate Path Depths of potential CAs (Alloc + Realloc)

LACNIC, LEGACY and ERX Data are selected from both RPSL and SWIP excluding duplicates.

Certification path depth "1" indicates the top-level allocations by IANA to RIRs, i.e., address blocks 13
 >= /8.


Analysis of IPv4 certificates

- Full deployment vs. optimized deployment:
 - Full deployment: if it was currently deployed based on the registry allocation data.
 - Optimized deployment after IPv4 prefix optimization:
 - Aggregation of adjacent equal length prefixes
- Algorithm for IPv4 prefix optimization:
 - For every possible aggregate (i.e., two adjacent, equal sized, aggregatable prefixes), check the following attributes:
 - If organizations in the two objects are defined and the same, aggregate the two.
 - Else if *organizations* in the two objects are defined but different, do not aggregate the two.
 - Else if both or either one of the two contain no organization, then:
 - If both *country code* and *status (e.g., PI vs. PA and allocation vs. assignment)* between the two are the same:
 - Check *mntner-related attributes* (i.e., mnt-by, mnt-lower, mnt-routes) between the two.
 - If check passes, then aggregate the two.
- Create a new aggregate, if no existing prefix for the aggregate exists, as follows:
 - Aggregated by org:
 - * generate a new aggregate with the *org/status* values of the first prefix without mnt values.
 - Aggregated by mnt:
 - Generate a new aggregate with the *country/status/mnt* values of the first prefix excluding org.

Distribution of IPv4 Certificate Path Depths

Optimized deployment

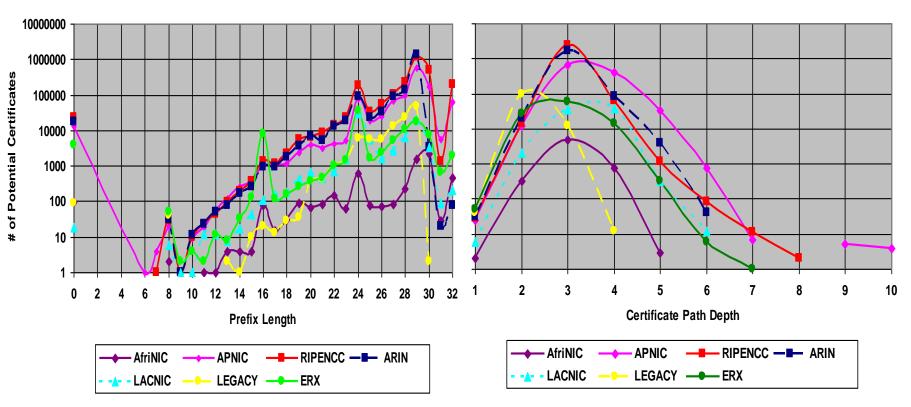
Full deployment

• LACNIC, LEGACY and ERX data are selected from both RPSL and SWIP excluding duplicates.

Prefix length "0" indicates that an address block cannot be represented by a single CIDR prefix.

Certification path depth "1" indicates the top-level allocations to RIRs by IANA, i.e., address 15 blocks >= /8. Each ">= /8" block is counted separately.

Improvement from optimization for IPv4 Certificates


	All objects			# objects with prefix length <= /24			# objects with prefix length >= /25		
	Full deployme nt	Optimized deployment	Reduction rate	Full deployment	Optimized deployment	Reduction rate	Full deployment	Optimized deployment	Reduction rate
RPSL	3,733K	1,598K	57%	385K	245K	36%	3,311K	1,316K	60%
SWIP	1,829K	1,816K	0.7%	145K	137K	6%	1,667K	1,662K	0.3%
LEGAC Y/ERX	207k	178K	14%	59K	48K	19%	144K	126K	13%
Global	5,769K	3,592K	38%	589K	430K	27%	5,122K	3,104K	39%

Prefixes with prefix length NULL are not included in this table.

Distribution of Prefix Lengths vs. **Certificate Path Depths of IPv4** (full deployment)

Prefix length

Certification path depth

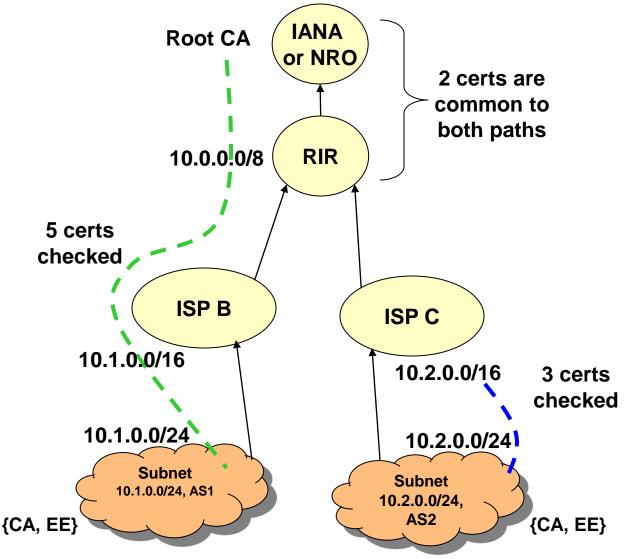
- LACNIC, LEGACY and ERX data are selected from both RPSL and SWIP excluding duplicates.
- Prefix length "0" indicates that an address block cannot be represented by a single CIDR prefix.
- 17 Certification path depth "1" indicates the top-level allocations to RIRs by IANA, i.e., address blocks >= /8. Each ">= /8" block is counted separately.

IPv4 Non-contiguous (Overlapping) Sub-allocations in RPSL (examples)

RIPE:

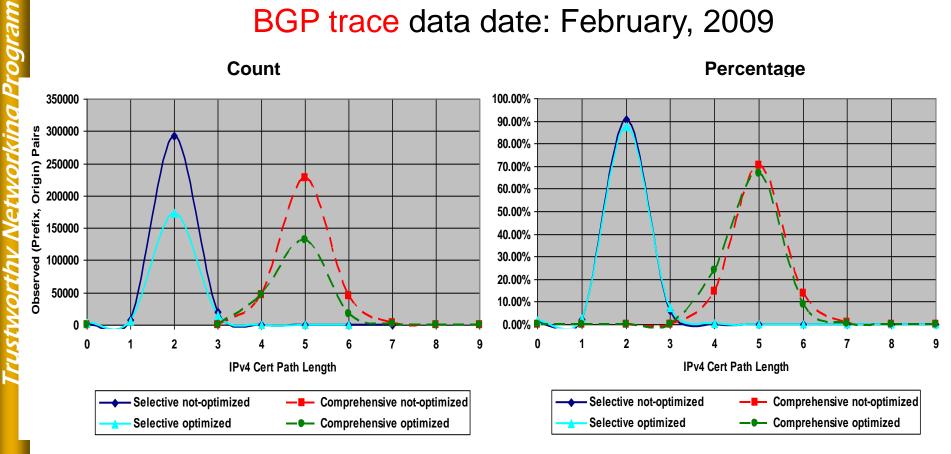
- 62.128.192.0 62.128.207.255
- 62.128.195.0 62.128.223.255
- APNIC:
 - 211.100.249.184 211.100.250.191
 - 211.100.249.192 211.100.250.199
 - $\bullet \quad 211.100.249.200-211.100.250.207$
 - 211.100.249.208 211.100.250.215
 - 211.100.250.216 211.100.250.225

Analysis of ROAs


- The cost estimate of ROA verifications in terms of certification path lengths
- Distribution of PI address space
- Distribution of MOASes of potential ROAs

Analysis of ROAs

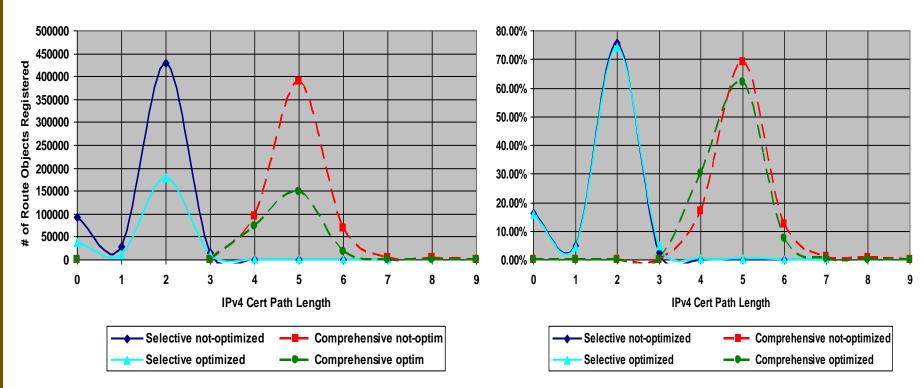
ROA analysis techniques:


- ROA prefix optimization with the same AS:
 - * Not optimized: full-scale
 - Optimized: Aggregation of adjacent equal length prefixes with the same Origin AS
- ROA prefix verification optimization:
 - Comprehensive:
 - Check every single resource certificate in a certification path including a root.
 - * Selective:
 - Use "validation state" of a certificate to avoid redundant checks on the certificates that have already been checked.
- Categorization of the ROA verification:
 - Comprehensive and not-optimized
 - Comprehensive and optimized
 - Selective and not-optimized
 - Selective and optimized
- **Method** for computing the length of a certification path:
 - Does the prefix of a potential ROA have an exact match resource allocation record?
 - * If yes, then that object is considered as a CA and assume an EE for the prefix is created.
 - * If not, then assume both a CA and an EE for the prefix are created.
 - Assume also that routes with prefix length >= 25 have only the corresponding EEs, not CAs.
 - Compute the number of certificates included in a particular certification path for the EE including a root certificate and a target EE.
 - IANA or NRO (the top-level entity) is assumed to be a single trust anchor for this analysis.

Optimization in ROA Prefix Validation: Selective Method

Distribution of Certification Path Lengths for ROA Prefix Validation

BGP trace data date: February, 2009

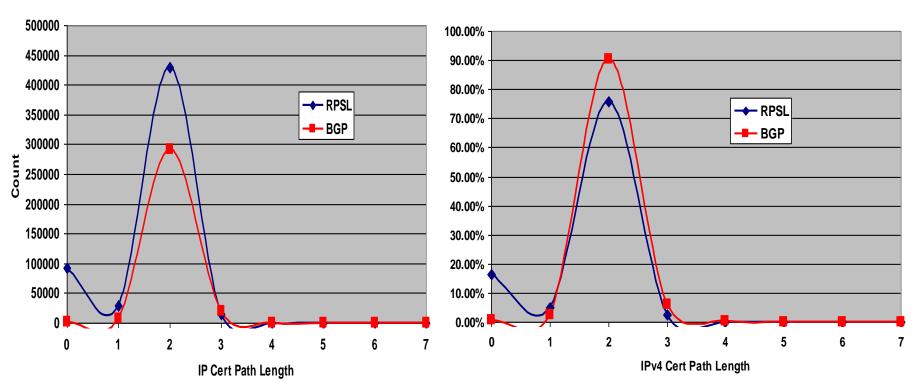

In the case "Selective and not-optimized", a realistic scenario for the global-scale deployed RPKI, the average cert. path length for IPv4 address is ~2.03. About 93.6% of observed (P,O) pairs need to verify about two or less IPv4 address certificates for the prefix of a route.

Distribution of Certification Path Lengths for ROA Prefix Validation

RPSL data date: 2009-02-18

Count

Percentage


In the case "Selective and not-optimized", the average cert. path length for IPv4 address is ~1.7. About 81% of registered route objects need to verify two or less IPv4 address certificates for the prefix and about 16% need not verify the prefix of a route at all (due to multi-homed prefixes).

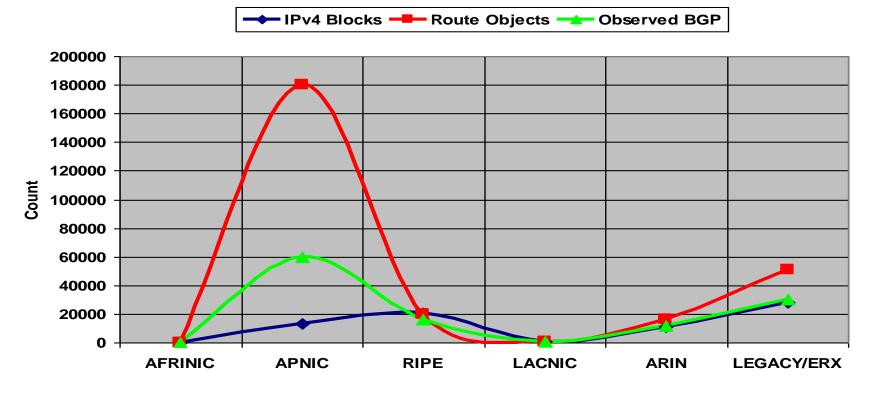
Distribution of Certification Path Lengths for ROA Prefix Validation

selective and not-optimized (RPSL vs. BGP Trace)

Count

Percentage

These graphs depict that the two data sources show similar behavior, i.e., the majority of ROAs (94% for BGP and 97% for RPSL) need to check only 2 or less IPv4 address certificates for ROA validation. 24

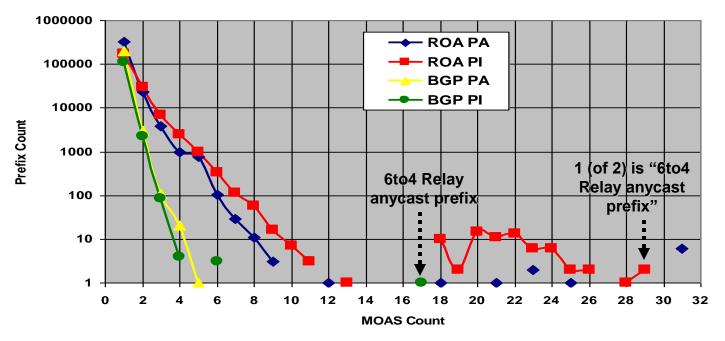

Analysis of PI Space in RPKI Issues

- Attributes "status:" in inetnum and "NetType:" in NetHandle:
 - Specify the type of address range represented by the address allocation object.
- No globally defined values of these attributes across RIRs. The defined values for PI blocks are as follows:
 - RIPE / AFRINIC:
 - * ALLOCATED PI / ASSIGNED PI / LIR PARTITIONED PI.
 - APNIC:
 - * ALLOCATED PORTABLE / ASSIGNED PORTABLE.
 - * All /8 blocks are defined as ALLOCATED PORTABLE.
 - Some LEGACY blocks are contained in both RPSL and SWIP.
- The LEGACY/ERX blocks are generally assumed to be PI. However, some LEGACY/ERX blocks are specifically defined as PA. These specifically defined PA blocks are excluded for PI analysis.
- Some inetnum objects (in RPSL) do not contain "status:" attribute at all:
 - # of inetnums with no "status:": 490,661.
 - Almost all of these came from JPNIC (one of NIRs under APNIC): 490,559

Analysis of PI Space in RPKI Methodology

- Select IP resource allocation objects with PI specification.
- Adapt a different approach to each RIR:
 - RIPE / AFRINIC:
 - All inetnum objects with the locally defined values for PI (ALLOCATED PI, ASSIGNED PI, LIR PARTITIONED PI).
 - * /8 blocks are defined as ALLOCATED UNSPECIFIED.
 - APNIC:
 - All inetnum objects with the locally defined values for PI (ALLOCATED PORTABLE, ASSIGNED PORTABLE).
 - * /8 blocks are defined as ALLOCATED PORTABLE, which are excluded.
 - ARIN / LACNIC:
 - * All objects that are directly "ASSIGNED" to an organization by the RIR.
 - LEGACY/ERX:
 - * First, select all NetHandle objects with PI from SWIP, which belong to LEGACY/ERX.
 - * Then, select all the LEGACY/ERX inetnum objects with PI from RPSL, which are not included in SWIP.
- Classify these PI blocks based on IANA allocation registry.

Distribution of PI Address Blocks based on Allocation Source



The graph depicts that APNIC-allocated PI address blocks are heavily sub-allocated to both route objects and advertised BGP updates.

- # IPv4 blocks with the valid "status": 5,281K
- # IPv4 blocks with NULL "status": 491K
- # IPv4 blocks with PI: 74K (~1.4%)
- # route objects (RPSL + SWIP): 654K
- # route objects with PI: 268K (~41%)
- # objects in both RPSL and SWIP: 4K
- There may be many proxy-registered route objects.
- # observed (P, O) pairs: 322K
 # observed (P, O) pairs with PI: 118K (~37%)

Distribution of MOASes of Route Objects (ROA) and Observed BGP Updates (BGP) with PI vs. PA

Registry data date: 2009-2-18

- > Here PA means the rest of address blocks other than PI space in the registry.
- > PI address blocks tend to have more MOASes, especially in route objects. Does this indicate that many of them could be proxy-registered route objects or stale objects?
- # globally unique route objects (RPSL + SWIP): 654K
- # globally unique route objects with PI: 268K (~41%)
- # multi registrations between RPSL and SWIP: 4K

- # of observed unique (P, O) pairs: 322K
- # of observed unique (P, O) pairs with PI: 118K (~37%)

Conclusions

- We performed quantitative analysis of potential deployed RPKI and compared two possible deployment scenarios: full vs. optimized deployments
 - The total number of IPv4 certificates can be significantly reduced with prefix aggregation.
 - The global reduction rate of the total number of IPv4 certificates is ~38%, and ~26% on the certificates with prefix length <= /24.
- ROA validation in RPKI may not be a big performance issue:
 - About 89% of the total number of IPv4 address certificates (as of 2/18/2010) are address blocks with prefix length >= /25, which may not call for ROA creation.
 - The performance of ROA verifications can be significantly improved by the use of the cached "validation state" of certificates being verified.
 - * About 933K IPv4 certificates among total of more than 5.8M need to be verified for ROA verification when used with existing route objects.
- Handling of partial allocations across multiple RIRs?
 - Who would be responsible for creating resCerts for LEGACY/ERX address blocks?
- Future tasks:
 - Analysis of RPKI growth over time
 - Potential impact of RPKI on global BGP dynamics:
 - ^{*} The effect of creation, expiration or revocation of resource certificates and ROAs
 - The models can help generate synthetic RPKI workload models for routers for origin / path validation