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Research Topics (heavy duty coatings)

• Antifouling coatings for ships

• Anticorrosive coatings (incl. weathering)

• Blade coatings for wind turbines

• Intumescent coatings (fire protection)
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People

• 2 professors (faculty)

• 3-5 Ph.D. students

• 2-4 M.Sc. Students

• Collaborators from coatings industry



Motivation and topics covered

• To obtain a ”complete” picture of UV-induced coating degradation  

• Improve knowledge on interlayer adhesion loss

– problem between epoxy base coat and PU top coat

– loss of adhesion after few days of UV exposure

• Contents of presentation
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• Contents of presentation

- mathematical model of coating degradation

- mechanisms and phenomena included

- verification

- high Tg coatings with narrow oxidation zones (2 µm)

- low Tg coatings with wide oxidation zones (250 µm)

- effect of light stabilizers

- future work



Thermoset coating exposed to UV 
radiation and humidity

Top view:

4 DTU Chemical Engineering, 
Technical University of Denmark

unexposed

exposed

Gloss loss not considered



Model contents

• Photoinitiated oxidation reactions

• Oxygen permeability

• Water absorption and diffusion
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• Reduction of crosslink density (erosion)

• Development of an intrafilm oxidation zone

• Effect of light stabilizers (UV absorber and HALS)

For details on model assumptions see Kiil (2012), JCT Res.



Chemical degradation mechanism

• Case study with crosslinked epoxy-amine coatings

• Closed-loop chemical mechanism
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• Reactions not included

Branching

Termination (not important here)



Adjustable parameters

• Rate constants for reaction (1) and/or (2)

(always included)

• Diffusion coefficient of oxygen in oxidation zone

(only when diffusion plays a role)
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(only when diffusion plays a role)

• Stable conversion of crosslinks at coating surface 
when erosion is initiated (if erosion takes place)

• Rate constant of radical scavenger 

(only when present)



Simulations and experimental data

ATR-FTIR
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Clear coat, 50 °C, RH=75 %, Tg > 100 °C, UV=480 W/m2

NIST integrating sphere

(data from Nguyen et al., COSI, 2010)



Simulation of oxidation zone development

Clear coat, 50 °C, RH=75 %, 

Tg > 100 °C, UV=480 W/m2

Oxygen diffusion very important
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Oxidation zone thickness of about 2 µm
in agreement with independent 
measurements by Monney et al. (1997, 
1998, 1999) 



Effect of nano-pigments on mass loss

50 °C, RH=75 % 

Tg > 100 °C, UV=480 W/m2

MWCNT has a strong effect on stable 

surface conversion
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Nano-SiO2 has no effect 

(same parameters used as for clear coat)

Experimental data from 

Nguyen et al., NIST, (2010)



Effect of relative humidity, RH (50 °°°°C), on erosion rate

Transmission IR
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RH=75 % RH=9 %

Experimental data from Rezig et al., NIST, (2006) (Tg=123 °C)



Simulations and experimental data (Mailhot et al., France, 2005)
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Clear coat, 60 °C, Tg=-50 °C, RH and UV unknown, no light stabilizers
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Effect of UV absorber on absorption and oxidation depth 

Clear coat, 60 °C, Tg=-50 °C, 30 hours

Experimental data from Mailhot et al. (2004)

Without UV absorber the oxidation zone

thickness was 250 µm
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No oxygen concentration profile

Absorption of UV radiation limits 

oxidation zone thickness
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Effect of molar absorptivity of UV absorber and rate 
constant of radical scavenger

Clear coat, 60 °C, Tg=-50 °C, 30 hours,

UV absorber present
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Conclusions

• Mathematical model developed for photoinitiated coating degradation

• The relative importance of the different rate phenomena quantified

• Model requires calibration of adjustable parameters for practical use

- from laboratory data to service life prediction
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- from laboratory data to service life prediction

• Model cannot predict gloss loss and speciation of photoproducts

Goldschmidt and Streitberger (2007)



Future work

• Extend model to cyclic accelerated testing

- effects of rain erosion, time of wetness, UV radiation, and temperature

• Extend model to more complex epoxy-amine formulations

- including other pigments and additives
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• Extend model to other coatings/binders

- requires a closed-loop mechanism and data for model calibration 

• Use model for simulation of weather scenarios of commercial interest

• Detailed experimental data series required!



Thank you for your attention…

Financial support by the Hempel Foundation 
is gratefully acknowledged

Contact:
Søren Kiil, sk@kt.dtu.dk
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Goldschmidt and Streitberger (2007)


