

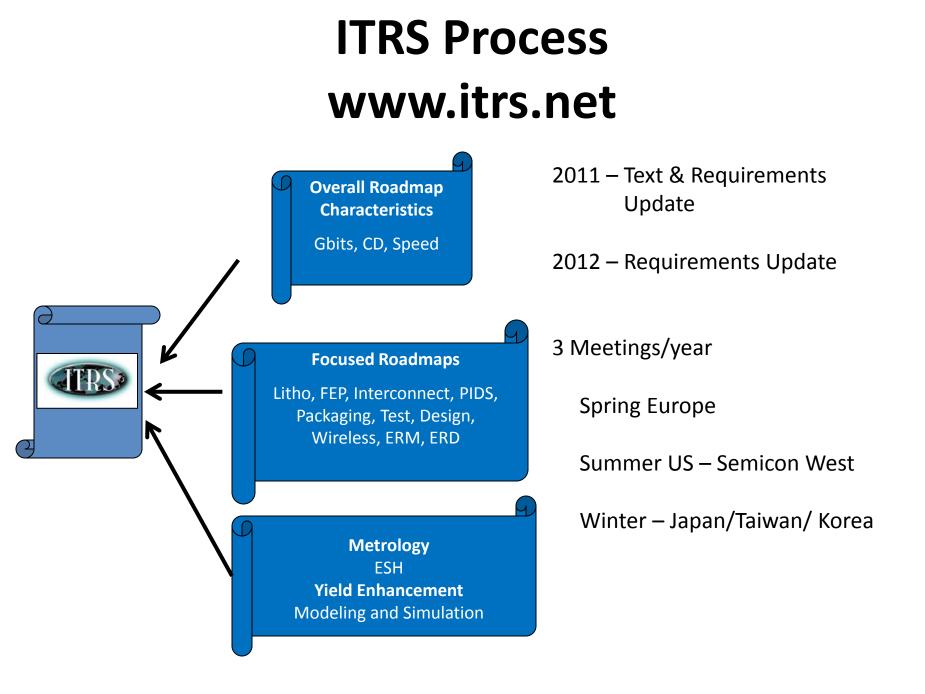
# International Technology Roadmap for Semiconductors Metrology Roadmap 2012

#### **Metrology Technical Working Group**

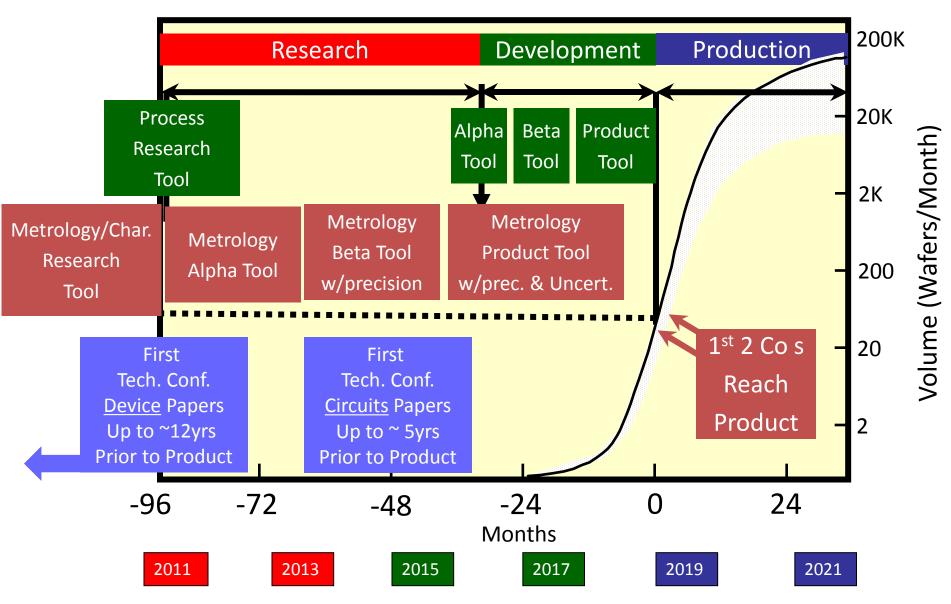
### Alain Diebold (CNSE) Christina Hacker (NIST)






National Institute of Standards and Technology

Technology Administration U.S. Department of Commerce




## Metrology Roadmap 2012 Spring and Summer Attendance

| Europe          | Carlos Beitia ( <i>CEA LETI MINATEC</i> )<br>Philippe Maillot (ST)                                                                                                                                                            |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Japan           | Masahiko Ikeno (Hitachi High-Tech)<br>Yuichiro Yamazaki (Toshiba)                                                                                                                                                             |
| Korea<br>Taiwan |                                                                                                                                                                                                                               |
| North America   | Alain Diebold (CNSE) -Chair<br>Christina Hacker (NIST) – co Chair<br>George Orji (NIST) – 2013 co Chair<br>David Seiler (NIST)<br>Yaw Obeng (NIST)<br>Benjamin Bunday (SEMATECH)<br>Karey Holland (FEI)<br>Scott List (Intel) |

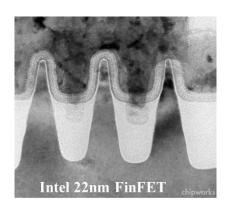


## **Metrology Timing Model w/Technology Cycle Timing**



Source: 2009 ITRS - Executive Summary Fig 2b

# AGENDA


- Metrology for Extreme CMOS 15 Year Horizon?
  - FEP Metrology
  - Lithography Metrology
  - Interconnect Metrology
- Metrology for Beyond CMOS
  - Graphene Devices
  - Other Devices
- Key Message about the Future

Metrology for Extreme CMOS

NanoElectronics – NanoTechnology – NanoScale Science

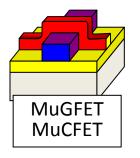
### 15 year Horizon Non-classical CMOS ITRS shows Bulk Si CMOS stopping in 2017 ? And only Multi Gate (i.e., Fins) after 2020 ?

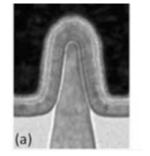


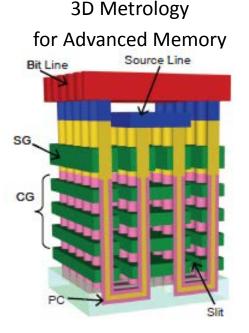


# AGENDA

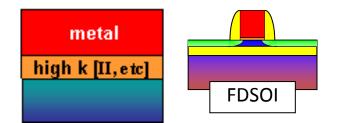
- Metrology for Extreme CMOS 15 Year Horizon?
  - FEP Metrology
  - Lithography Metrology
  - Interconnect Metrology
- Metrology for Beyond CMOS
  - Graphene Devices
  - Other Devices
- Key Message about the Future


### Metrology for 3D Transistors and Memory

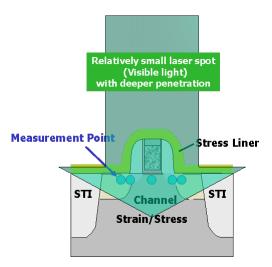

EOT & Defects for New Channel Materials for high  $\mu$ 


Metrology for Next Generation Metal Gate/High k stacks




CD/Sidewall/Height/Stress/Dop ant Metrology for 3D Devices

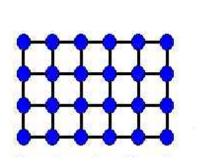


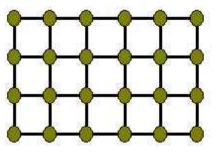





New Memory Materials Phase Change Memory

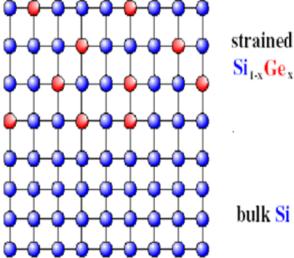



Nano-topography & Local Stress measurements

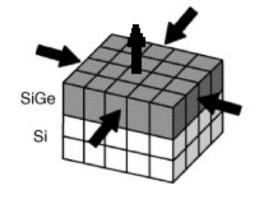


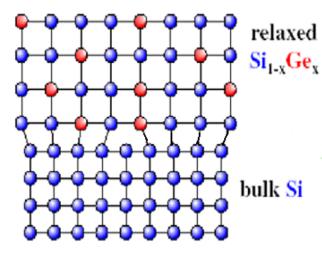



Silicon and Germanium lattice constants differ by more than 4 %.


- $Si_{1-x}Ge_x$  has a larger lattice than that of Silicon
- Si<sub>1-v</sub>Ge<sub>v</sub> undergoes bi-axial stress to match Silicon's in-plane lattice.







Bulk (relaxed) Si

Bulk (relaxed) SiGe









http://www.aip.org/tip/INPHFA/vol-8/iss-3/p22.pdf http://ars.sciencedirect.com/content/image/1-s2.0-S0167572905000464-gr4.jpg D.J. Paul, Physics World 13, pp27-32 (February 2000)

### Metrology for New Channel Materials

## 004 Scan Measures SiGe lattice planes parallel

to Si substrate

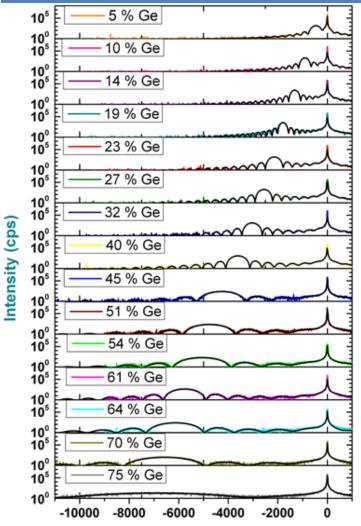
 Record Si Peak at the respective ω and 2θ combination.

College of Nanoscale

Science & Fngineering

- Vary ω to find the SiGe peak with the detector angle 2θ varying twice as fast as ω.
- Results in having data only for perfectly parallel planes.

Samon 2θ ω Detector Beam Conditioner Detector ω-2θ Coupled Scan SiGe Si strained Rock w/ 105 Si<sub>1-x</sub>Ge<sub>x</sub> Coupled  $\omega$ -2 $\theta$ Ι bulk <mark>Si</mark>  $\omega - 2\theta$ 


• 004 ω-2θ coupled scans.

### Metrology for New Channel Materials

SCIENCE & ENGINEERING UNIVERSITY AT ALBANY State University of New York

College of Nanoscale

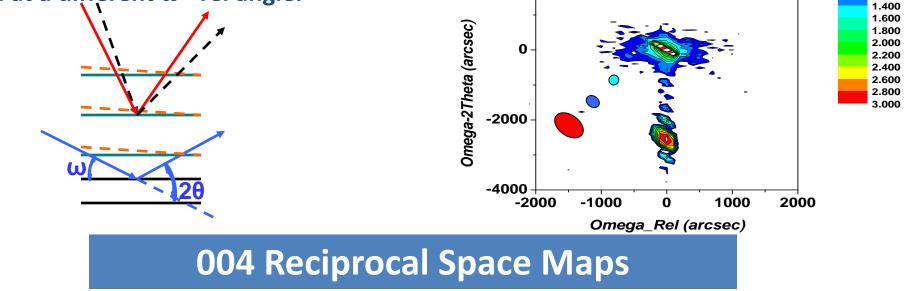
#### 004 HR XRD ω-2θ plots



**Omega-2Theta (arcsec)** 

| S.No. | Ge Concentration (x) | Si <sub>1-x</sub> Ge <sub>x</sub> Thickness<br>(Angstroms) |
|-------|----------------------|------------------------------------------------------------|
| 1     | 0.05                 | 638 A°                                                     |
| 2     | 0.10                 | 752 A°                                                     |
| 3     | 0.14                 | 790 A°                                                     |
| 4     | 0.19                 | 870 A°                                                     |
| 5     | 0.23                 | 529 A°                                                     |
| 6     | 0.27                 | 534 A°                                                     |
| 7     | 0.32                 | 460 A°                                                     |
| 8     | 0.40                 | 374 A°                                                     |
| 9     | 0.45                 | 188 A°                                                     |
| 10    | 0.46                 | 191 A°                                                     |
| 11    | 0.51                 | 175 A°                                                     |
| 12    | 0.54                 | 158 A°                                                     |
| 13    | 0.61                 | 219 A°                                                     |
| 14    | 0.64                 | 145 A°                                                     |
| 15    | 0.70                 | 115 A°                                                     |
| 16    | 0.75                 | 46 A°                                                      |

 $Si_{(1-x)}Ge_x$  from x = 0.05 to x = 0.75


We record  $\omega$  - 2 $\theta$  coupled scan intensities for varying  $\omega$  angles.

- Start with  $\omega$  20 coupled scans.
- Fixing 2 $\theta$ , slightly vary  $\omega \rightarrow \omega$ -rel.

- We get a Si Peak at a Particular  $\omega - 2\theta \Rightarrow [\omega-rel]_a$  and a SiGe peak at another  $\omega - 2\theta \Rightarrow [\omega-rel]_{b.}$ 

If there is no tilt -- SiGe peak at the same ω-rel angle as Silicon's.

A tilted layer gives the SiGe peak at a different  $\omega - 2\theta$  for that particular d-spacing and at a different  $\omega$  - rel angle.



θΒ

G.I

20<sub>8</sub>

G.E

1.000

1.200 1.400

1.600 1.800

2.000

2.200

2.400 2.600

2.800

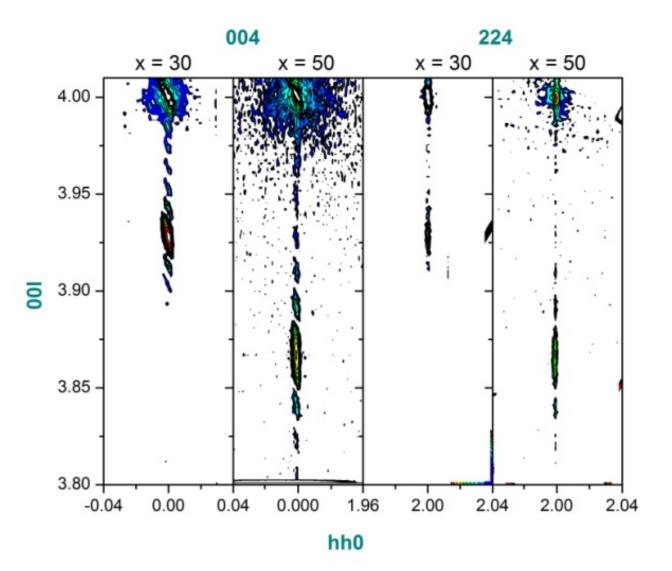
3.000

- An asymmetric scan Grazing incidence or Grazing exit.
- Grazing Incidence  $\theta_i = \theta_B \phi$
- Grazing Exit  $\theta_i = \theta_B + \phi$

College of Nanoscale

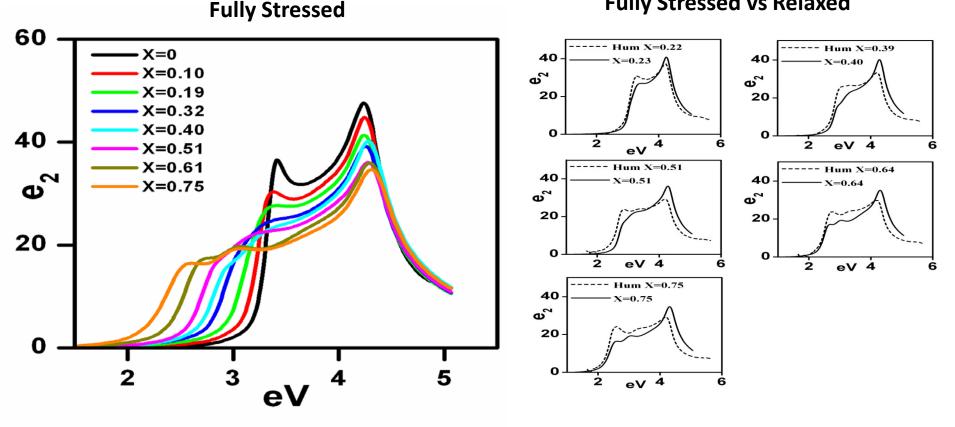
Science & Fngineering

- •We record  $\omega$  2 $\theta$  coupled scan intensities for varying  $\omega$  angles.
- 1000 - Start with  $\omega$  - 2 $\theta$  coupled scans. 0 - Fixing 2 $\theta$ , slightly vary  $\omega \rightarrow \omega$ -rel. **)mega - 2Theta (arcsec)** – We get a Si Peak at a Particular  $\omega$  - 2 $\theta$  -  $\omega$ -rel and a SiGe peak at another  $\omega$  - 2 $\theta$  -  $\omega$ -rel. -1000 • A relaxed layer gives the SiGe peak at a different  $\omega$  - 2 $\theta$  but at the same  $\omega$  - rel angle. -2000 -3000 500 -500 1000 1500 2000 2500 0


**Omega** Rel (arcsec)

### **224 Reciprocal Space Maps**

### Metrology for New Channel Materials




College of Nanoscale

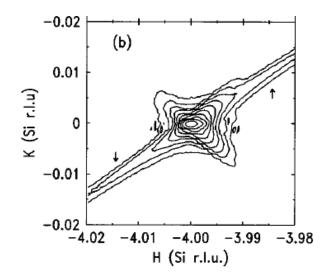


#### RSM's of Si(1-x)Gex, x = 0.30, x = 0.50

## e<sub>2</sub> of Si(1-x)Gex



#### **Fully Stressed vs Relaxed**


College of Nanoscale Science & Engineering

### Metrology for New Channel Materials

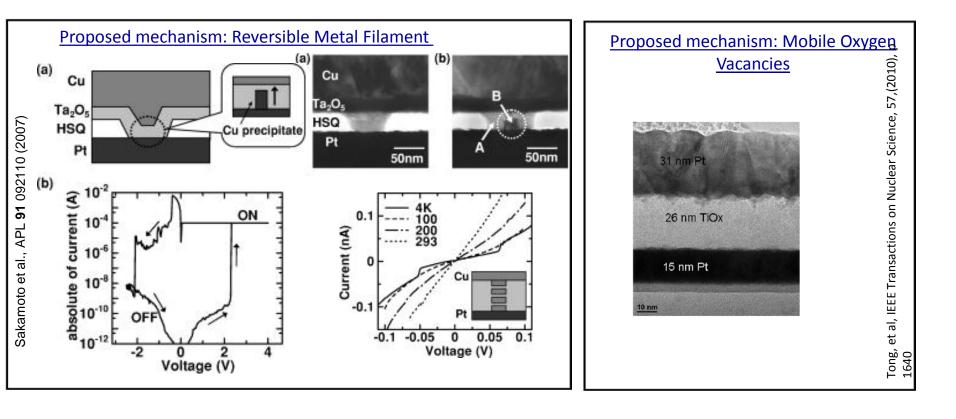
Metrology for New Channel Materials

**Defect Metrology – in line method needed?** 

### **GI-I-XRD H-K Reciprocal Space Maps**



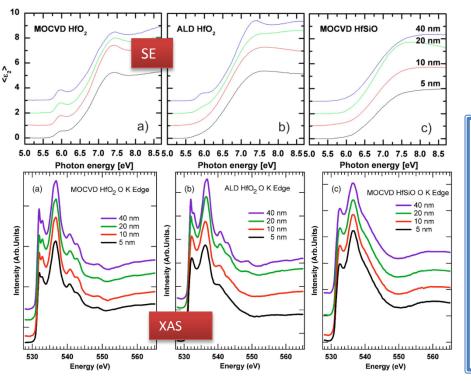
 $\begin{array}{c} -0.04 \\ (b) \\ 0.02 \\ \hline \\ -0.02 \\ -0.02 \\ -0.04 \\ -4.02 \\ -4.00 \\ -4.00 \\ -3.98 \\ -3.96 \\ -3.94 \\ -3.92 \\ H (Si r.l.u.) \end{array}$ 


X-Pattern observed for films that relax with the Modified Frank-Reed Mechanism Pattern for relaxation via "roughening mechanism"

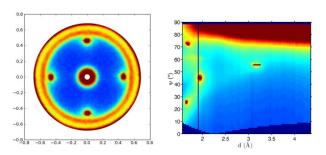
J-L Jordan-Sweet, et al, J. Appl. Phys. 80, (1996), p89.

#### Metrology for New FEP Memory

#### **Resolving Redox Memory**


- What is the switching mechanism(s)?
- How does it form? Can we see filaments?
- Is it reversible?




### Properties of next Gen High k stacks

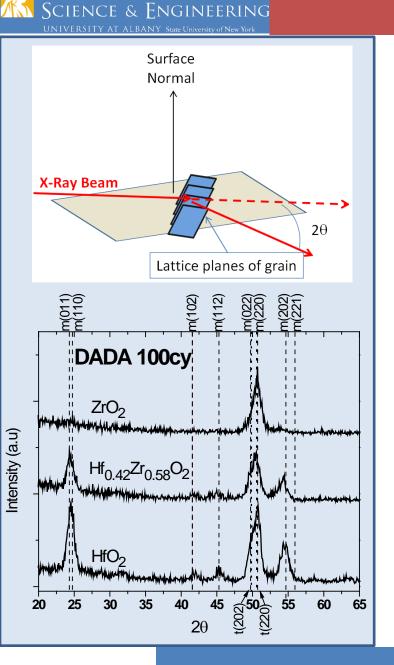
#### **Resolving New Materials and Processes**

- What is the crystal structure?
- What is the correlation between electrical properties & materials structure?
- How can interfaces be engineered?

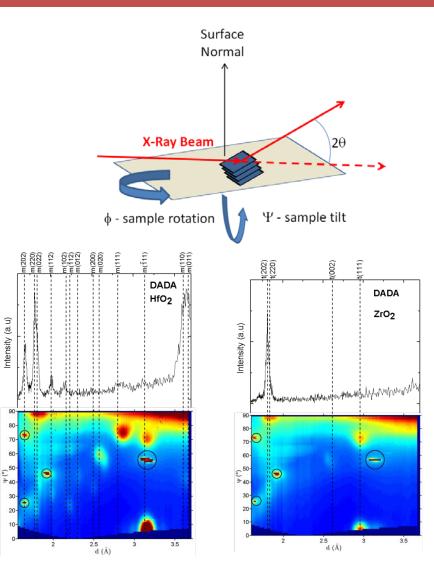







**GI-I- XRD & Texture** 

#### Theoretically determined k values


X. Zhao and D. Vanderbilt, Phys. Rev. B., 233106 (2002)

|                        | monoclinic<br>high-k |    | tetragonal<br>her-k |
|------------------------|----------------------|----|---------------------|
| k (HfO <sub>2</sub> )* | 16                   | 29 | 70                  |
| k (ZrO <sub>2</sub> )† | 20                   | 37 | 47                  |
|                        |                      |    |                     |

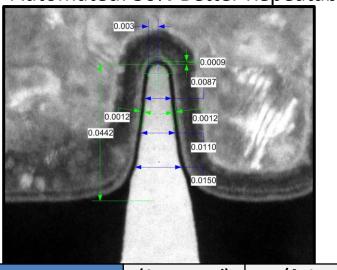
### Metrology for New High K



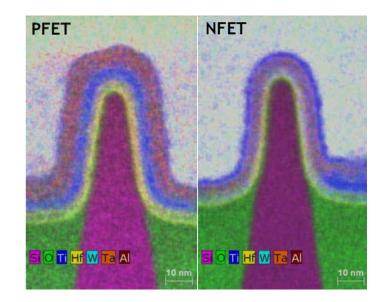
College of Nanoscale



#### High K texture – tetragonal phase via ZrO<sub>2</sub>


## STEM/TEM High Volume Process Monitoring

Future S/TEM High Sample  $\rightarrow$  Data Rates


High throughput sample prep/measure 15,000 images/month/tool

Data Acquisition & Analysis

#### Automated: 30% Better Repeatability



#### Fast Elemental Analysis 5 min EDS Mapping



|                  | (Automated) | (Automated)              | (Manual)          |  |
|------------------|-------------|--------------------------|-------------------|--|
| Feature          | Average CD  | <b>Dynamic Precision</b> | Dynamic Precision |  |
|                  | (nm)        | (nm 3-σ)                 | (nm 3-σ)          |  |
| Fin width at 75% | 8.48        | 0.16                     | 0.19              |  |
| Fin width at 25% | 15.23       | 0.14                     | 0.24              |  |
| Fin Height       | 45.10       | 0.16                     | 0.46              |  |
| Tip Radius       | 2.50        | 0.17                     | 0.31              |  |

#### Image thanks to Karey Holland

#### Explore. Discover. Resolve.

### Low Voltage Imaging to avoid Damage

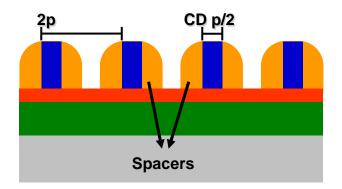
### **30kV STEM Imaging**



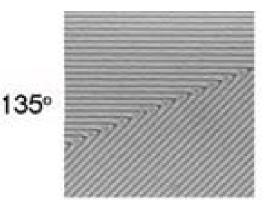
Simultaneous acquisition of 3-channels (pseudo-colored for segmentation)



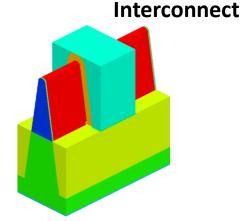
# AGENDA


- Metrology for Extreme CMOS 15 Year Horizon?
  - FEP Metrology
  - Lithography Metrology
  - Interconnect Metrology
- Metrology for Beyond CMOS
  - Graphene Devices
  - Other Devices
- Key Message about the Future

### Metrology for Lithography


#### **Challenges for Critical Dimensional Metrology**

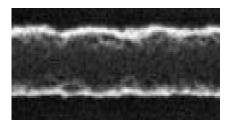
Multiple Patterning Issues: Two sets of CD's


Pitch Walking



**Directed Self Assembly with Block co-polymers** 

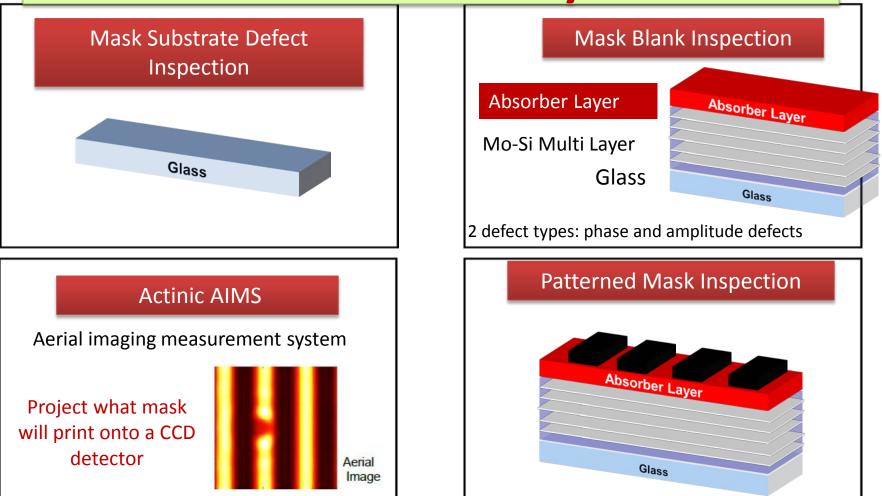


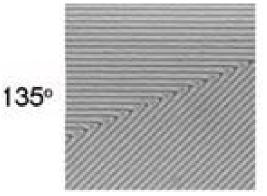

#### CD Metrology for 3D Transistors and



CD Metrology for Optical and EUV Masks

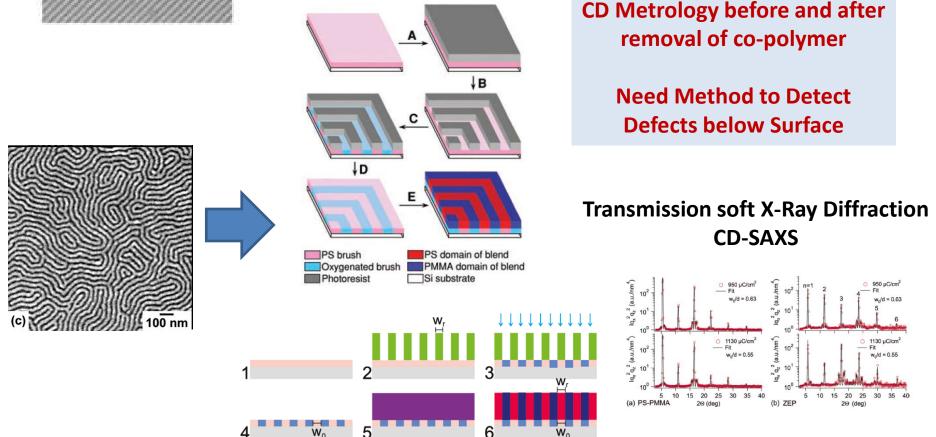
Contour vs Design


#### Line Edge Roughness




Peter Clark ee Times 5-17-12

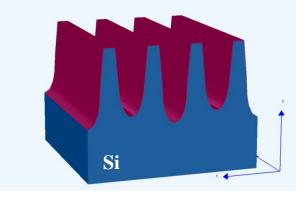
### Mask Metrology for EUV Lithography


## **Area of Great Industry Interest**

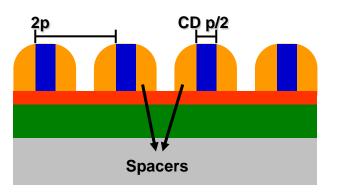




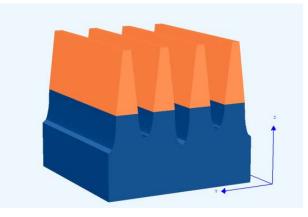
### Metrology for DSA Lithography


Directed Self Assembly with Block co-polymers ERM survey indicated "in-production" with 2018 insertion dates for Flash and Logic (one unofficial claim of 2015)




Stein, Liddle, Aquila, Gullikson, (NIST, Berkeley, U. Houston) Macromolecules 2010, 43, 433–441

### Metrology for Double Patterning Lithography


#### **Pitch Walking**

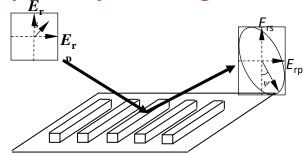


Multiple Patterning Issues: Two sets of CD's Three sets of CD's Four sets of CD's

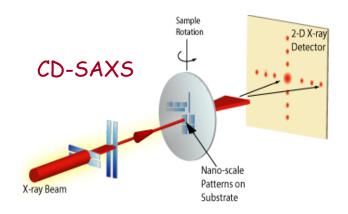


#### **Stress Induced Anisotropic Optical Properties**

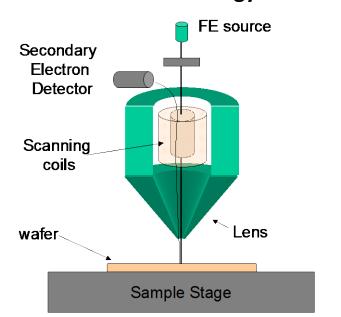



#### ITRS Litho - Triple Patterning by 2013 and Quad by 2017

#### CD Metrology for Lithography

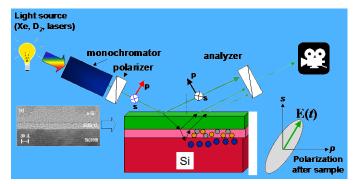

#### **Critical Dimensional Metrology Methods**

#### Scatterometry – AKA OCD


#### **Ellipsometry of Grating Structures**



#### CD Metrology Extendibility Potential Solutions

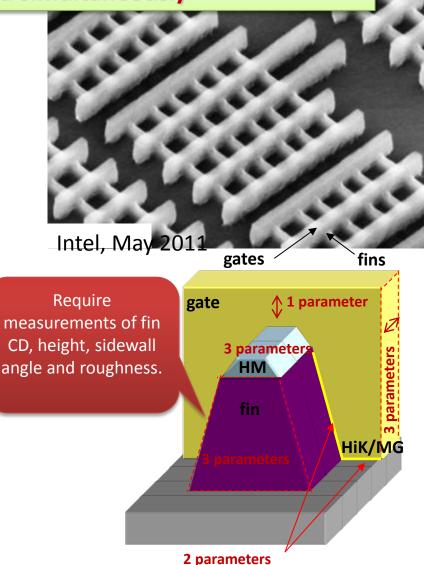



#### CD SEM – State of the art uses energy filtered imaging



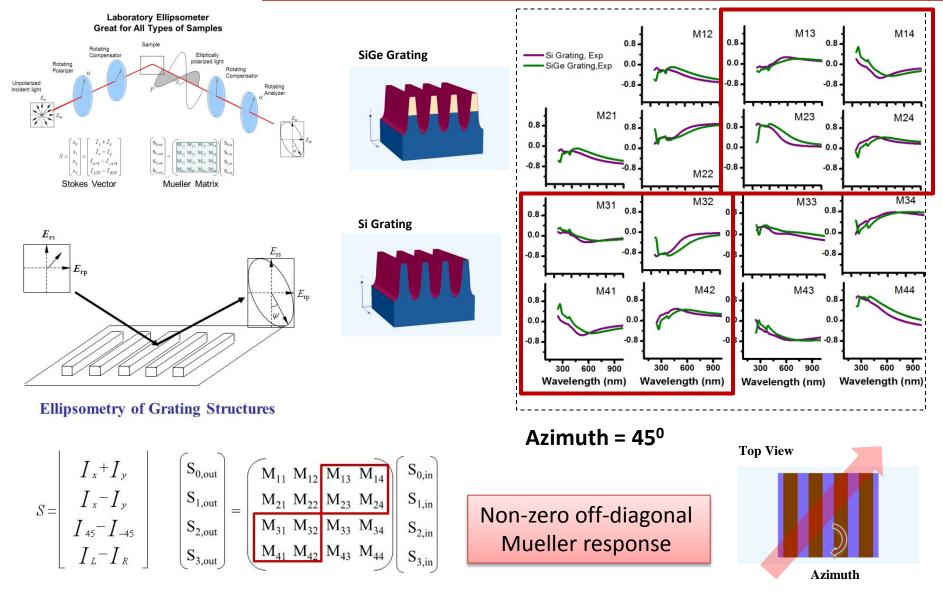
#### Joe Kline + Wen li Wu (NIST)

#### **Scatterometry - Mueller Matrix Ellipsometry**

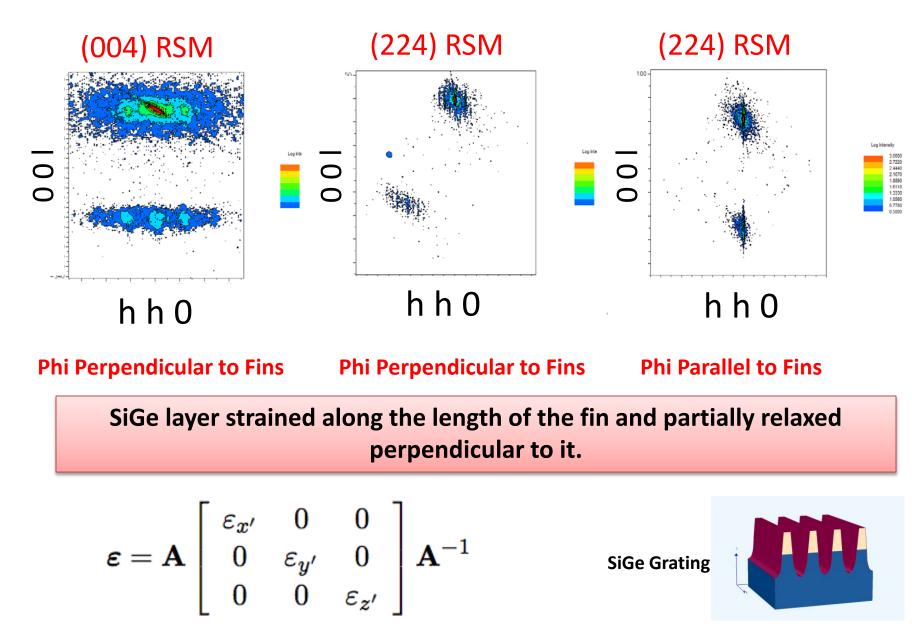





### **3D Transistor Dimensional Metrology**


Challenge: Dimensional metrology on complex 3D structures requires many parameters to be measured simultaneously

- Complex structures such as FinFETs require 3D metrology
  - Many parameter (see diagram), not counting top corner rounding, footing, or etch recess under fin.
  - Gate spacer would increase number of parameters.
- One example from 2011 SPIE: Fin is measured by CD-SEM or AFM and results fed forward
  - OCD (scatterometry) then simultaneously measures fewer parameters with improved measurement uncertainty and higher speed.
- All methods are advancing :
  →Complementary metrology delivers better solution

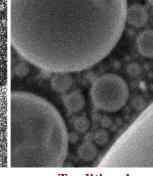


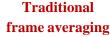




### 3D Transistor Dimensional Metrology Mueller Matrix Ellipsometry




### 3D Transistor Dimensional Metrology



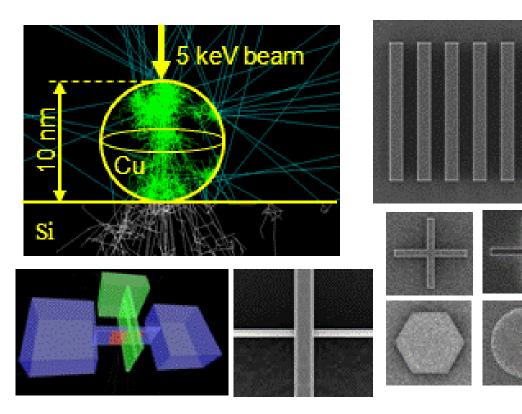

## **CD-SEM Extendability**



**Fast single frame** 








Drift-corrected frame averaging

### Aberration Corrected CD-SEM

### Better CD SEM Via better image acquisition

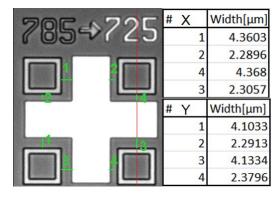
## 3D model determines all structure dimensions



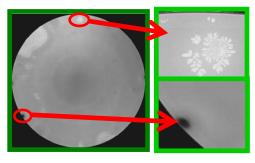
Andras Vladar, NIST

### 2012 Metrology Roadmap

|            |                                                                                       | 2013 | 2016 | 2019 | 2024 |
|------------|---------------------------------------------------------------------------------------|------|------|------|------|
|            | Flash 1/2 pitch (nm)                                                                  | 18   | 14   | 11   | 8.0  |
|            | DRAM ½ Pitch (nm)                                                                     | 28   | 20   | 14   | 8.0  |
|            | MPU Printed Gate Length (nm)                                                          | 28   | 20   | 14.0 | 6.0  |
|            | MPU Physical Gate Length (nm)                                                         | 20   | 15.0 | 12.0 | 7    |
|            | Wafer Overlay Control (nm) - 20% DRAM                                                 | 6.0  | 4.0  | 2.8  | 1.3  |
|            | Wafer Overlay Control Double Patterning (nm)                                          | 4    | 2    | 1    | ?    |
|            | Lithography Metrology                                                                 |      |      |      |      |
| e          | Physical CD Control (nm)<br>Allowed Litho Variance = 3/4 Total Variance               | 2.1  | 1.6  | 1.2  | 0.7  |
| Gate       | Wafer CD metrology tool <b>uncertainty</b> (3σ, nm) at P/T = 0.2                      | 0.42 | 0.31 | 0.25 | 0.15 |
|            | Etched Gate Line Width Roughness (nm) <8% of CD                                       | 1.6  | 1.2  | 1.0  | 0.6  |
| Lines      | Printed CD Control (nm)<br>Allowed Litho Variance = 3/4 Total Variance                | 1.9  | 1.5  | 1.1  | 0.8  |
| Dense      | Wafer CD metrology tool <b>uncertainty</b> (3s, nm) at P/T = 0.2                      | 0.4  | 0.3  | 0.3  | 0.2  |
| ٩          | Double Patterning Metrology Requirements, Generic Spacer Patterning - Driven By Flash |      |      |      |      |
|            | Metrology Uncertainty for Core Gap (Carrier line)                                     | 0.4  | 0.3  | 0.2  | 0.1  |
| . <u>c</u> | c Fin Metrology                                                                       |      |      |      |      |
| ΪĒ         | Metrology Uncertainty for fin top corner rounding radius (nm)                         | 1.5  | 1.1  | 0.9  | 0.64 |

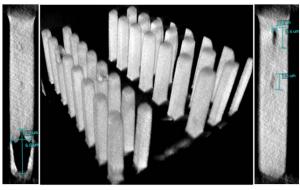

# AGENDA

- Metrology for Extreme CMOS 15 Year Horizon?
  - FEP Metrology
  - Lithography Metrology
  - Interconnect Metrology
- Metrology for Beyond CMOS
  - Graphene Devices
  - Other Devices
- Key Message about the Future

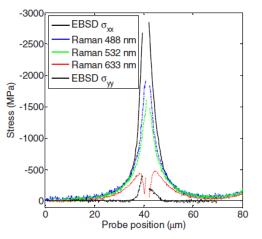

#### Metrology for 3D Interconnect

#### New subchapter for 3D Interconnects introduced in 2011

#### Overlay Through Silicon Substrate – IR Microscopy




Bonding Defects – SAM Scanning Acoustic Microscopy




Voids and Delamination

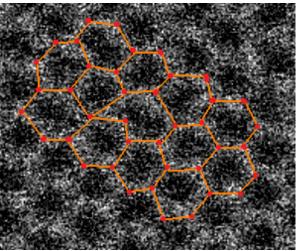
TSV Metrology and Inspection: X-Ray Microscopy



#### Stress Metrology around TSVs Raman Microscopy



# AGENDA

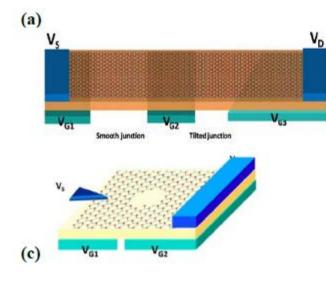

- Metrology for Extreme CMOS 15 Year Horizon?
  - Lithography Metrology
  - FEP Metrology
  - Interconnect Metrology
- Metrology for Beyond CMOS
  - Graphene Devices
  - Other Devices
- Key Message about the Future

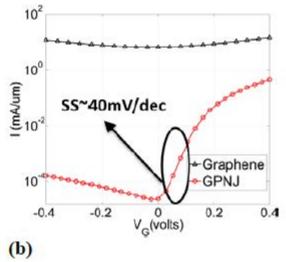
### Metrology for ERM / ERD

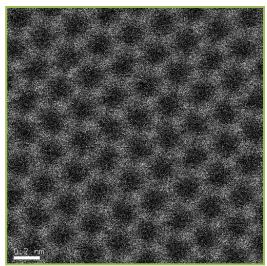
#### High carrier mobility and structural robustness have driven a considerable effort in Graphene research

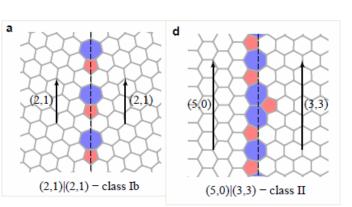
 $\begin{array}{c} \text{Output} \text{Discrete field} \\ \text{Hall Voltage} \\ \text{X} \end{array} \\ \end{array}$ 

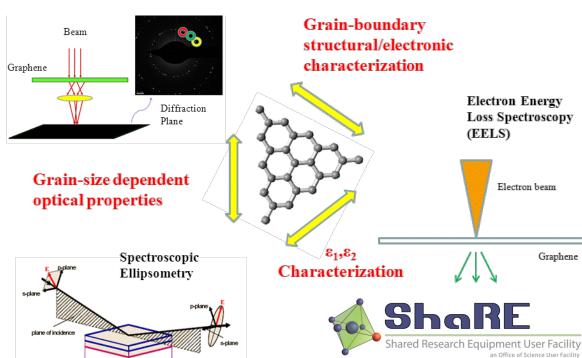
Defects in CVD Graphene





#### **Newly Recognized Gaps**

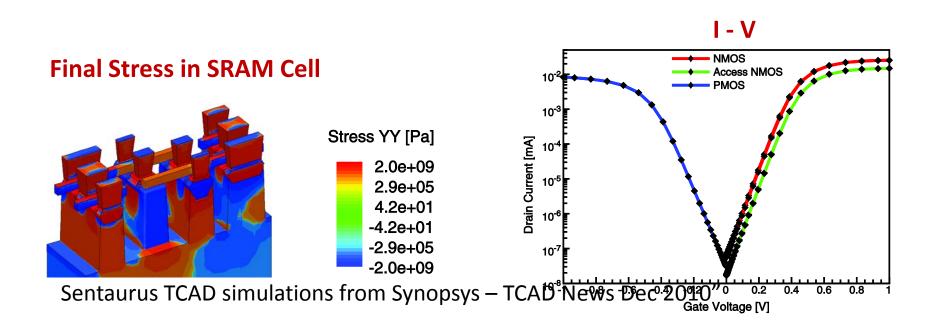

- Measurement of Contact Resistance for Nanostructures
- ESH measurement requirements for new materials and nanomaterials





### Metrology for ERM / ERD



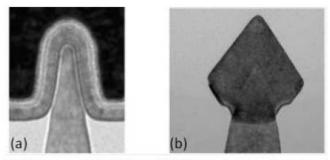








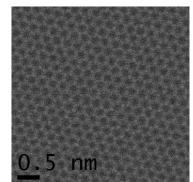

### Modeling, Simulation, and Metrology


- Need to connect multiple measurements/methods at nanoscale to properties in a large area using modeling and simulation
- Example : Simulations of SRAM cell show that each transistor experiences a different stress field measuring one transistor does not represent the entire SRAM Cell



#### Metrology Summary

- Litho
  - Litho Metrology Now 3D
  - Fin, Double Patterning Requirements
- FEP
  - USJ Metrology Gap (profile and dose)
  - Defects in new channel materials
    Ge and III-V 's
- Interconnect
  - Void Characterization now R&D
  - K values of patterned films
- ERD-ERM
  - Contact Resistance Measurement Gap
- ES&H
  - Many Measurement GAPS


#### **3D Metrology**



TEM images of Intel 22-nm PMOS tri-gate transistor (a) and

#### From Dick James – Chip Works SST Blog

#### CVD Graphene F. Nelson CNSE





### References

- Effects of stress on the dielectric function of strained pseudomorphic Si<sub>1-x</sub>Ge<sub>x</sub> alloys from 0 to 75 % Ge grown on Si (001) G.R. Muthinti, M. Medikonda, T.N. Adam, A. Reznicek, and A.C. Diebold, J. Appl. Phys. 112, (2012), 053519.
- Fin Pitch and Stress Measurement using X-Ray Diffraction Reciprocal Space Maps and Optical Scatterometry, A.C. Diebold, M. Medikonda, G.R. Muthinti, V. Kamenini, J. Fronheiser, M. Wormington, B. Peterson, and J. Race, Metrology, Inspection, and Process Control for Microlithography XXVII, SPIE Advanced Lithography, San Jose, Feb 24-March 1, 2013.
- Mueller based scatterometry measurement of nanoscale structures with anisotropic in-plane optical properties, G.R.Muthinti, M. Medikonda, J. Fronheiser, V.Kamineni, B. Peterson, J. Race, W.McGahan, S. Rabello, and A. C. Diebold, Metrology, Inspection, and Process Control for Microlithography XXVII, SPIE Advanced Lithography, San Jose, Feb 24-March 1, 2013.
- Mueller based scatterometry measurement of nanoscale structures with anisotropic in-plane optical properties, G.R.Muthinti, M. Medikonda, J. Fronheiser, V.Kamineni, B. Peterson, J. Race, W.McGahan, S. Rabello, and A. C. Diebold, Metrology, Inspection, and Process Control for Microlithography XXVII, San Jose, Feb 13-16, 2012.
- Investigation of E-beam patterned nanostructures using Mueller Matrix based Scatterometry, G.R. Muthinti, B. Peterson, and A.C. Diebold, Metrology, Inspection, and Process Control for Microlithography XXVI, SPIE Advanced Lithography, San Jose, Feb 13-16, 2012.