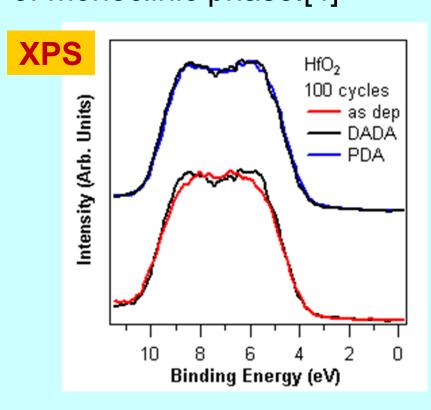
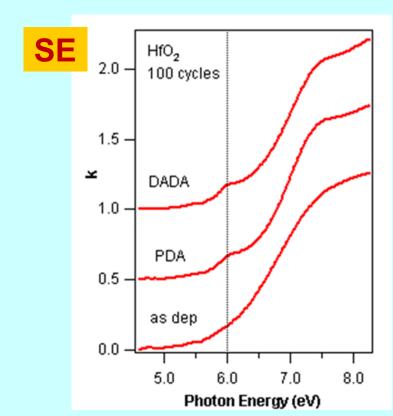
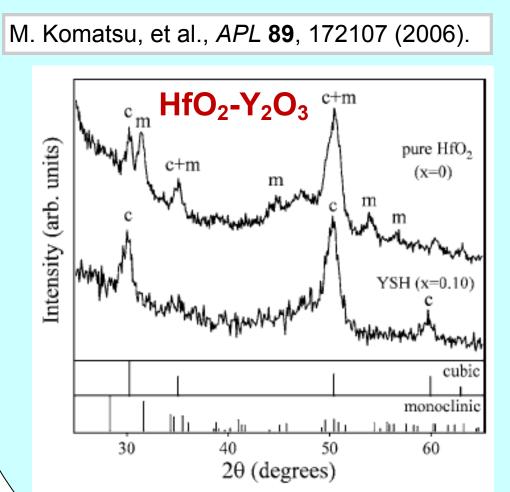

Multi-technique Approach for Determination of Crystalline Phase and Electronic Structure of Atomic Layer Deposited Hf_{1-x}Zr_xO₂

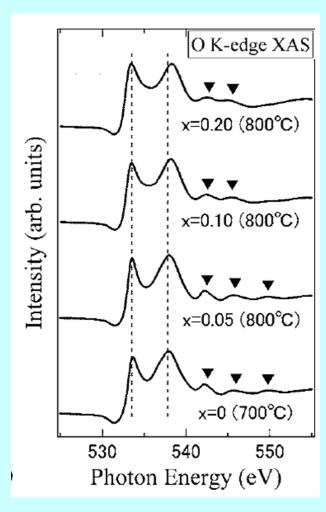

Relja Vasić,¹ Steven Consiglio,² Robert Clark,² Kandabara Tapily,² Shawn Sallis,³ Bo Chen,⁴ David Newby, Jr,⁴ Manasa Medikonda,¹ Gangadhara Raja Muthinti,¹ Eric Bersch,^{1,*} Gert Leusink,² and Alain Diebold¹

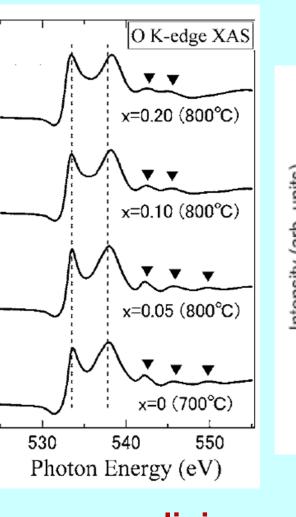

¹College of Nanoscale Science & Engineering, University at Albany, 257 Fuller Road, Albany, NY 12203, USA ²TEL Technology Center, America, 255 Fuller Road, Albany, NY 12203, USA ³Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY 13902, USA ⁴Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA *SEMATECH, 257 Fuller Road, Albany, NY 12203 (present address)

BACKGROUND

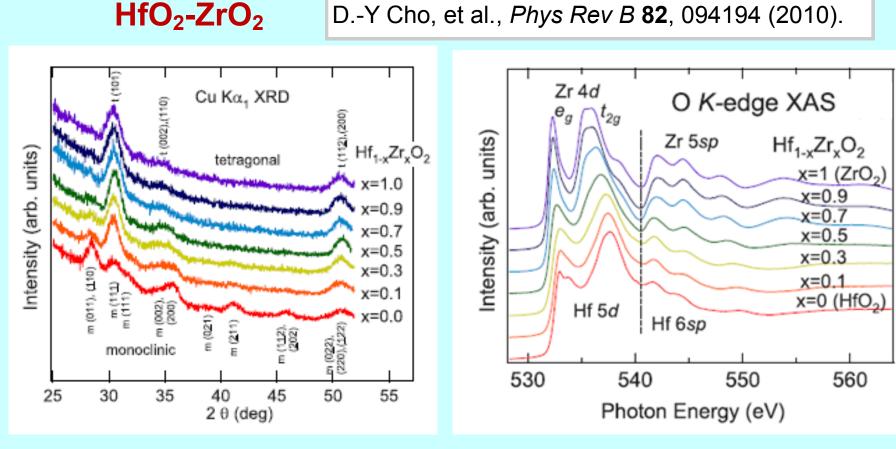
- Scaling of MOSFET devices requires decreasing the equivalent oxide thickness of the gate dielectric and/or increasing its dielectric constant (k).
- . As a replacement for SiO₂ based gate dielectrics, Hf-based dielectrics have been chosen.[1]
- . HfO₂ with an admixture of ZrO₂ has the potential to provide a higher k value via tetragonal phase stabilization as opposed to the thermodynamically preferred monoclinic phase which is typically obtained for HfO₂.[2-3]
- . Our previous investigation focused on crystallinity of thin HfO₂ films by a multi-technique approach combining grazing incidence X-ray diffraction (GIIXRD), along with the identification of signature spectral features from X-ray photoemission spectroscopy (XPS) valence band and spectroscopic ellipsometry (SE) measurements which were indicative of crystallinity and/or presence of monoclinic phase.[4]

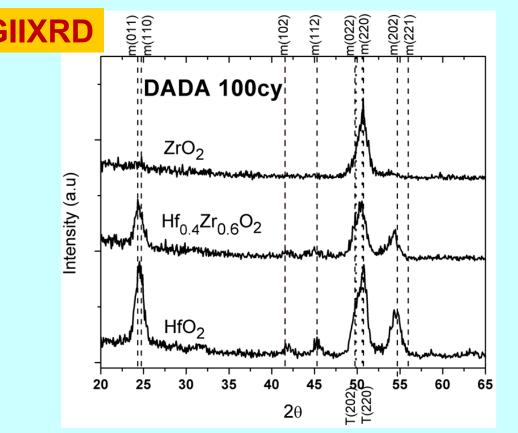

peak splitting -> crystalline


absorption feature at ~6eV -> monoclinic

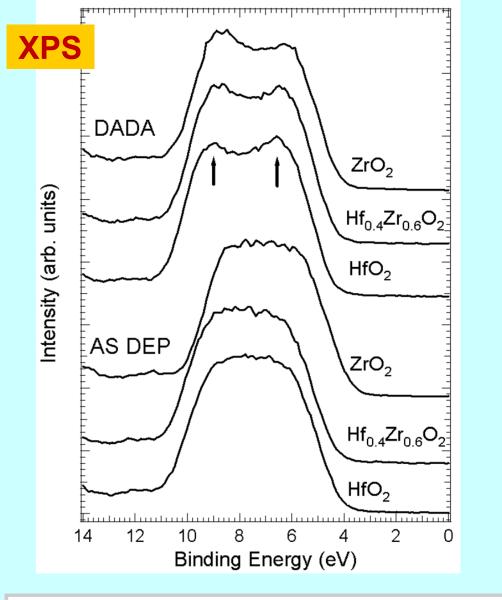

APPROACH/TECHNIQUES

- . In this study we extend the multi-technique approach by utilizing X-ray absorption spectroscopy (XAS) to study Hf_{1-x}Zr_xO₂ films grown by a cyclical deposition and annealing scheme, which is termed DADA (20 ALD cycles followed by annealing in an inert gas repeated 5 times).[5,6]
- GIIXRD and XAS were performed at beamline X20A and X1B, respectively, at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory.
- XPS was performed in a laboratory based XPS system with a monochromatized Al Kα source.
- SE was measured for λ range 150–1000 nm using a Woollam vacuum ultraviolet- variable angle SE (VUV-VASE).


CORRELATION OF XAS SPECTRAL FEATURES WITH CRYSTALLINE PHASE FROM LITERATURE.[7-10]:

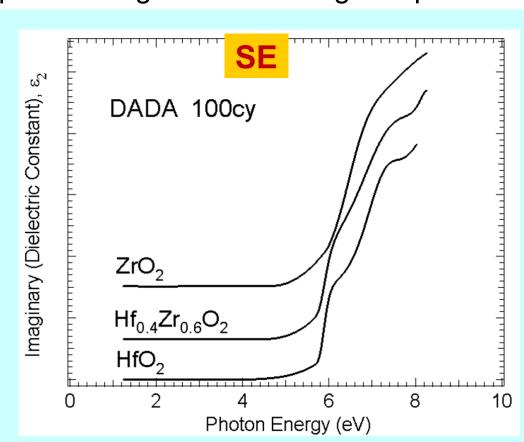


XAS -> 2 peaks = cubic, 3 peaks = monoclinic (to photon energy 555 eV)

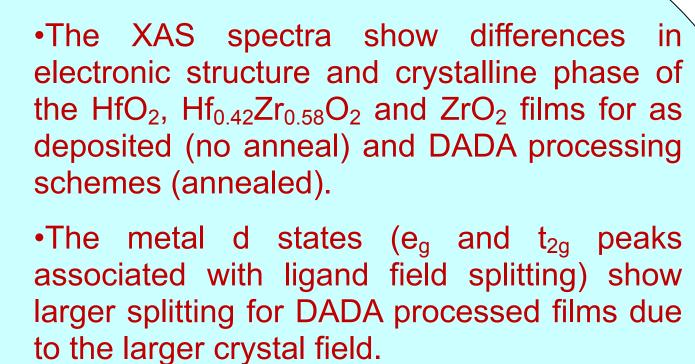


XAS -> 3 peaks = monoclinic, 5 peaks = tetragonal (to photon energy 565 eV)

The local bonding order observed by XAS and long range order observed by XRD show the same crystal phases.



GIIXRD spectra of DADA processed films; m-HfO₂, Hf_{0.4}Zr_{0.6}O₂ and t-ZrO₂.


Double peak structure due to valence band splitting of O 2p bonding and non-bonding states indicates that the DADA processed films are crystalline. In the case of amorphous films one broad peak is observed.

XAS at O K edge for (a) as deposited and (b) DADA processed films. Arrows show peaks in sp band and extended region. Presence of 3 peaks is signature of monoclinic phase while presence of peaks is signature of tetragonal phase

Absorption feature at 6 eV is unique to monoclinic phase and is absent for t-ZrO₂. Feature is consistent with theoretically predicted self-trapped polaron in monoclinic HfO₂.[12,13]

RESULTS

•The peaks in the region above ~ 540 eV are more pronounced and sharper in the DADA processed films compared to the amorphous as deposited samples.

TABLE. Conduction band minima (eV) for as deposited and DADA films at O K edge.

	Sample	as deposited	DADA
/S	HfO ₂	532.0	532.4
e	$Hf_{0.4}Zr_{0.6}O_2$	531.6	531.9
5	ZrO_2	531.2	531.4

Conduction band minima is reduced by addition of ZrO₂. Relation of barrier height to increased leakage current density needs to be considered.

REFERENCES

- 1. D. G. Schlom, et al., MRS Bull. 33, 1017 (2008). 2. D. H. Triyoso, et al., *J. Vac. Sci. Technol. B* **25**, 845 (2007).
- 3. J. Müller, et al., Microelectron. Eng. 86, 1818 (2009).
- 4. E. Bersch, et al., AIP Conf. Proc. 1395, 154 (2011).
- 5. K. Tapily, et al., *ECS Trans*. **45**(3), 411 (2012).
- 6. S. Consiglio, et al., *J. Electrochem. Soc.* **159**, G80 (2012).
- 7. G. Lucovsky, et al., *Microelectron. Reliab.* 46, 1623 (2006)
- 8. D.-Y. Cho, et al., *Appl. Phys. Lett.* **89**, 172107 (2006).
- 9. M. Komatsu, et al., *Appl. Phys. Lett*. **89**, 172107 (2006).
- 10.S. Toyoda, et al., J. Appl. Phys. 97, 104507 (2005).
- 11.E. E. Hoppe, et al., Appl. Phys. Lett. 92, 141912 (2008).
- 12.D. Muñoz Ramo, et al., Phys. Rev. Lett. 99, 155504 (2007).
- 13.M. C. Cisneros-Morales, et al., Appl. Phys. Lett. 96, 191904

CONCLUSIONS

- . A multi-technique approach was shown to be useful for a thorough determination of the crystalline phase and band structure of Hf_xZr_{1-x}O₂ (x=0-1) high k gate dielectric films that were deposited by atomic layer deposition using a cyclical deposition and annealing scheme.
- . The combination of XPS of the valence band and SE of the optical band edge can be used to identify crystallinity and the presence of monoclinic phase for thin Hf_{1-x}Zr_xO₂ films.
- . XAS of the conduction band was used to determine the electronic conduction band structure and corroborate diffraction data for crystalline phase and the crystal phase transformation from monoclinic to tetragonal structure due to the addition of ZrO₂ in HfO₂.

COLLEGE OF MANOSCALE SCIENCE & ENGINEERING

UNIVERSITY AT ALBANY State University of New York

Acknowledgements

-USER CONTRACT ACKNOWLEDGEMENTS. Research carried out in part at the National Synchrotron Light Source, supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No.DE-AC02-98CH10886. -We thank Professor Kevin Smith and Dr. Jude Laverock at Boston University, supported in part by the Department of **Energy under Contract No. DE- FG02-98ER45680.**

-We thank Jean-Jordan Sweet (IBM) and Christian Lavoie (IBM) for help with data collection at X20A.