Device-Level Electrical Characterization Using Ferromagnetic Resonance of Magnetic Multilayers

- have anomalous or ballooning write error rate (WER)
- millions of times
- WER tail not understood

- candidate devices
- physics
- deviate from uniform

- Reset nanopillar to known state with long pulse (typical 400 ns, 0.4 V)
- reset)
- Attempt to switch nanopillar with 5-100 ns long pulse at voltages ranging 0.2-0.7 V
- switching/no switching)
- # Switched
- hours to collect

National Institute of Standards and Technology • U.S. Department of Commerce

E.R. Evarts (eric.evarts@nist.gov),

W.H. Rippard, and M.R. Pufall Magnetics Group National Institute of Standards and Technology

Boulder, CO

Typical vs. Anomalous WER

Typical Device

- For each pulse duration, WER decreases (single) exponentially with increasing pulse voltage
- Shift towards quasi-static switching voltage with longer pulse duration

Resonance Peak Analysis Typical Device 0 mV, Fundamental • 0 mV. First Excited 300 mV. Fundamenta 300 mV. First Excited

Conclusions

- Anomalous WER seen in ≈10% of devices
- Devices with anomalous WER tails can be predicted using FS-ST-FMR with DC bias near the onset conditions for the WER anomaly
- FS-ST-FMR measurements (minutes) are orders of magnitude faster than WER measurements (hours)
- Prominent second peak detected in FS-ST-FMR spectra for anomalous devices
- Second peak suggests non-uniform magnetization reversal
- Higher order resonances can account for up 70% of the total power in anomalous devices

Acknowledgments

Special thanks to Everspin Technologies for providing the thin films used in this work. Thanks to S. Russek and A. Kos for fruitful discussions.

- For each pulse duration, WER decreases with double exponential or more complex character
- Typically appears as kink in WER tail
- Overall, shallow slope compared to typical devices