# Device-Level Electrical Characterization Using Ferromagnetic Resonance of Magnetic.Multilayers 

E.R. Evarts (eric.evarts@nist.gov), W.H. Rippard, and M.R. Pufall

National Institute of Standards and Technology Boulder, CO


Write Error Rate (WER) Measurements


Field-Swept Spin-Torque Ferromagnetic Resonance Measurements (FS-ST-FMR)


[^0]Device Details


FS-ST-FMR Spectra

- FS-ST-FMR spectra recorded at different DC bias currents At bias near onset of anomalous behavior, unique signature observed

Typical Device



RA $=3 \Omega-\mu m^{2}$
$T M R=70 \%$ TMR $=70 \%$
Quasi-DC switching Nanopillars etched down to tunnel ba Typical dimensions: $50 \mathrm{~nm} \times 150 \mathrm{n}$
$6 \mathrm{~nm} \times 180 \mathrm{n}$ $-60 \mathrm{~nm} \times 180 \mathrm{~nm}$
$\therefore .70 \mathrm{~nm} \times 210 \mathrm{~nm}$
$100 \mathrm{~nm} \times 200 \mathrm{~nm}$ Results tested on over 20
devices
Similar results from 7 different films

Typical vs. Anomalous WER


For each pulse duration, WER decreases (single) exponentially with increasing pulse voltage voltage with longer pulse duration

Anomalous Device


For each pulse duration, WER decrease with double exponential or mor complex character Typically appears as kink in WER tail
Overall, shallow slope compared to typical devices

Resonance Peak Analysis

Typical Device


Anomalous Device


In anomalous devices as bias increases:

- Power shifts into higher - Power shifts in
order modes
- Resonance fields increase



## Conclusions

Anomalous WER seen in $\approx 10 \%$ of devices
Devices with anomalous WER tails can be predicted using FS-ST-FMR with DC bias near the onset conditions for the WER anomaly
FS-ST-FMR measurements (minutes) are orders of magnitude faster than WER
Prominent second peak detected in FS-ST-FMR spectra for anomalous devices
Second peak suggests non-uniform magnetization reversal
Higher order resonances can account for up $70 \%$ of the total power in anomalous devices


[^0]:    E.R. Evarts, M.R. Pufall, and W.H. Rippard, JAP, 113, 083903 (2013)

