

Issues with Electrical Characterization of Graphene Field Effect Transistors

Eric M. Vogel

Professor, Georgia Institute of Technology Adjunct Professor, University of Texas at Dallas

Acknowledgments

- Corey Joiner, Dr. Tania Roy, Dr. Zohreh Hesabi (Georgia Tech)
- Dr. Archana Venugopal¹ (now with T.I.), Dr. Jack Chan¹ (now with Micron),
- Dr. Luigi Colombo²
- Prof. Robert M. Wallace,¹ Dr. Adam Pirkle¹ (now with Intel), David Hinojos¹, Dr. Stephen McDonnell¹,
- Prof. Rodney Ruoff³, Dr. Carl Magnuson³

¹University of Texas at Dallas ²Texas Instruments Incorporated ³University of Texas at Austin

Funding

- Center for Low Energy Systems Technology (LEAST), one of six centers supported by the STARnet phase of the Focus Center Research Program
- NSF MRSEC: The Georgia Tech Laboratory for New Electronic Materials
- Texas Instruments Diversity Fellowship
- SRC-NRI Southwest Academy for Nanoelectronics (completed)

- Motivation
- A Simple "Universal" Model for Transport in Single Layer Graphene
- Effect of Device Dimensions on Mobility
- Effect of Contacts
- CVD Graphene Vertical Tunnel Transistors
- Conclusions

Motivation

- A Simple "Universal" Model for Transport in Single Layer Graphene
- Effect of Device Dimensions on Mobility
- Effect of Contacts
- CVD Graphene Vertical Tunnel Transistors
- Conclusions

Motivation

• While the use of the FET test structure is common, there have been few investigations to systematically determine whether assumptions associated with characterizing the transport properties of graphene using this test structure are valid.

R. M. Feenstra, et al., Journal of Applied Physics, vol. 111, Feb 2012. J.J Su et al., Nat. Phys.,4, 799 (2008)

- Motivation
- A Simple "Universal" Model for Transport in Single Layer Graphene
- Effect of Device Dimensions on Mobility
- Effect of Contacts
- CVD Graphene Vertical Tunnel Transistors
- Conclusions

Mobility Extraction – Constant Mobility Model

• Two Point Probe measurement setup. Contact Resistance extracted from the model.

$$R_{total} = R_{contact} + R_{channel} = R_{contact} + \frac{N_{sq}}{n_{total}e\mu} = R_{contact} + \frac{N_{sq}}{\sqrt{n_0^2 + n[V_{TG}^*]^2}e\mu}$$

S. Kim et al., Appl. Phys. Lett. 94, 062107(2009)

Plot shows R_{total} vs. V_{TG –Dirac}. Symbols – Data Lines – modeling results

- Mobility extracted from R-V_{bg} measurements using the model proposed Kim et al.
- Also extracted is the intrinsic carrier concentration n₀.
- The model assumes that the mobility is carrier concentration independent.

Question

Is this model for transport calculations and extraction consistent with other methods?

Comparison of Mobility Models

A. Venugopal et al., Journal of Appl. Phys. 109, 104511 (2011)

- Observed µ_H vs. n trend agrees with reported trend for exfoliated graphene in literature W. Zhu et al., Phys. Rev. B, 80, 235402 (2009)
- Mobility values from all models comparable at high bias.
- Difference in mobility at low bias attributed to the use of intrinsic carrier conc. n₀ in the constant mobility model.
- Extracted mobility is seen to have a significant dependence on the contact resistance

Comparison of Mobility Models

	Sample	Description	Reported Mobility (cm²/Vs)	Extracted Mobility (cm²/Vs)
$\overline{\Box}$	UTD	Back-gate, measurement at ~300K	Х	24381
വ്വ)	Ref. 2	Top gate (Al ₂ O ₃ dielectric), measurement at ~300 K	8600	8407
ρ_{sh}	Ref. 1-1	Back-gate, measurement at ~5 K	30000	26134
	Ref. 1-2	Back-gate, measurement at ~5 K	230000	201634

 Mobility reported in literature and mobility extracted using constant mobility model compared.

¹Bolotin K.I. et al., Solid State Communications, 146, 351-355(2008)

- Extracted and reported mobilities seen to be consistent
- Trends in sheet resistance at a given carrier concentration follow the trend in extracted mobilities as expected.

²S. Kim et al., Appl. Phys. Lett. 94, 062107(2009)

Mobility and Impurities

It is found that the product of mobility and impurity density is a constant for a wide variety of interfacial conditions, annealing conditions, top dielectrics and measurement temperatures.

$$\mu \times n_0 \approx 1.15 \times 10^{15} / Vs$$

- Adam, S.; Hwang, E. H.; Galitski, V. M.; Das Sarma, S., A Self-consistent Theory for Graphene Transport. *Proc. Natl. Acad. Sci.* **2007**, *104*, 18392-18397.
- Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M., Charged-impurity Scattering in Graphene. *Nat. Phys.* **2008**, *4*, 377-381.
- J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, R. S. Ruoff, L. Colombo, R. M. Wallace, and E. M. Vogel, "Reducing Extrinsic Performance-Limiting Factors in Graphene Grown by Chemical Vapor Deposition," ACS Nano, 2012, 6 (4), pp 3224–3229

A Simple "Universal" Model for SLG Transport

S. Kim et al., Appl. Phys. Lett. 94, 062107(2009) A. Venugopal et al., accepted Solid-State Communications (2012)

A Simple "Universal" Model for SLG Transport

- The maximum resistance of a single layer graphene device cannot be strongly changed.
- The minimum resistance for high quality (low n_0) graphene is limited by R_c . As n_0 increases and μ decreases, the influence of R_c on the minimum R is less important.

A. Venugopal, L. Colombo, and E. M. Vogel, "Issues with characterizing transport properties of graphene field effect transistors," Solid State Communications (2012), http://dx.doi.org/10.1016/j.ssc.2012.04.042

- Motivation
- A Simple "Universal" Model for Transport in Single Layer Graphene
- Effect of Device Dimensions on Mobility
- Effect of Contacts
- CVD Graphene Vertical Tunnel Transistors
- Conclusions

Dependence of μ_{eff} on L_{ch}

A. Venugopal et al., Journal of Appl. Phys. 109, 104511 (2011)

Z. Chen et al., IEDM (2008)

- Mobility determined to be dependent on channel length
- L_{ch} dependence previously attributed to
 - device operating partially in the ballistic and diffusive regime
 - damage from e beam lithography

I. Meric et al., Nanoletters 11, 1093(2011)

 $\mu_{eff}(L_{ch}, W_{ch}) - Dependence on t_{ox}$

- Extracted µ_{eff} plotted as a function of channel length(L_{ch}), width(W_{ch}) and underlying oxide thickness (t_{ox}).
- For comparable L_{ch} and W_{ch} , mobility is seen to decrease with decreasing oxide thickness t_{ox}

A. Venugopal et al., Journal of Appl. Phys. 109, 104511 (2011)

Graphene on 300 nm SiO₂ – Strip Capacitor

F.T. Vasko et al., Appl. Phys. Lett. 97, 092115 (2010)

- Uniformity of charge density distribution in the channel region depends on the aspect ratio, W_{ch}/t_{ox} (ratio of the device width and the thickness of the dielectric).
- Comparable W_{ch} and t_{ox} results in enhanced charge density at the edges.

Nishiyama et al., IEEE Trans. on Components, Hybrids and Manufacturing Technology, 13, 417(1990)

P. G. Silvestrov et al., Phys. Rev. B, 77, 155436(2008) K.L. Grosse et al., Nature Nano. (2011) Charge density distribution in a graphene strip

Graphene on SiO₂ – Strip Capacitor

F.T. Vasko et al., Appl. Phys. Lett. 97, 092115 (2010)

- Charge accumulation at the edges results in enhanced conductivity in the channel.
- •Trend seen in conductivity vs. channel width manifests itself in the extracted mobility

A. Venugopal et al., Journal of Appl. Phys. 109, 104511 (2011)

Mobility Values

		tox	L	W	Temp.	Mobility	
Reference	Dielectric Type	(nm)	(µm)	(µm)	(K)	(cm^2/Vs)	
[1]	SiO ₂ (BG)	300	~5	~0.5	5-300	3000-10000	
[25]	SiO ₂ (BG)	300	2-4	0.5-4	4.2	3500	
[25]	SiO ₂ (BG)	300	2-4	0.5-4	350	2500	
[26]	SiO ₂ (BG)	300	5	5	1.7	10000	Colombo, and E. M.
[27]	SiO ₂ (BG)/HfO ₂ (TG)	300	5	3	1.5	10000-17000	Vogel. "Issues with
[21]	SiO ₂ (BG)/NFC HfO ₂ (TG)	300	17	1.5	300	8500	Characterizing Transport
[18]	SiO ₂ (BG)	300	10-15	5-10	300	25000	Characterizing transport
[4]	SiO ₂ (BG)	300	3	1.5	5	25000	Properties of Graphene
[4]	Suspended	300	3	1.5	5	200000	Field Effect Transistors "
[13]	SiO ₂ (BG)/Al ₂ O ₃ (FG)	300	2.4	10	300	8500	
[28]	SiO ₂ (BG)	300	7.3	0.4	300	4780	Solid State
[29]	h-BN (BG)	14	~3.5	~1.5	4	60000	Communications 152,
[30]	SiO ₂ (BG)	300	4	7	300	4500	1311_1316 (2012)
[31]	SiO ₂ (BG)	300	3-20	3-20	1.6	2000-20000	1311–1310 (2012)
[32]	SiO ₂ (BG)	300	3-5	1-3	300	8200	
[32]	Al ₂ O ₃ (BG)	72	3-5	1-3	300	7400	

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science, 306 (2004) 666-669.

[4] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Communications, 146 (2008) 351-355.

[13] S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, S.K. Banerjee, Applied Physics Letters, 94 (2009) 062107-062103.

[18] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Nat Nano, 3 (2008) 206-209.

- [21] D.B. Farmer, H.-Y. Chiu, Y.-M. Lin, K.A. Jenkins, F. Xia, P. Avouris, Nano Letters, 9 (2009) 4474-4478.
- [25] W. Zhu, V. Perebeinos, M. Freitag, P. Avouris, Physical Review B, 80 (2009) 235402.
- [26] Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature, 438 (2005) 201 204.
- [27] K. Zou, X. Hong, D. Keefer, J. Zhu, Physical Review Letters, 105 (2010) 126601.
- [28] M.C. Lemme, T.J. Echtermeyer, M. Baus, H. Kurz, IEEE Electron Device Letters, 28 (2007) 282-284.
- [29] C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Nat Nano, 5 (2010) 722-726. [30] V.E. Dorgan, M.-H. Bae, E. Pop, Applied Physics Letters, 97 (2010) 082112-082113.

[31] Y.W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E.H. Hwang, S. Das Sarma, H.L. Stormer, P. Kim, Physical Review Letters, 99 (2007) 246803.

[32] L. Liao, J.W. Bai, Y.Q. Qu, Y. Huang, X.F. Duan, Nanotechnology, 21 (2010).

- Motivation
- A Simple "Universal" Model for Transport in Single Layer Graphene
- Effect of Device Dimensions on Mobility
- Effect of Contacts
- CVD Graphene Vertical Tunnel Transistors
- Conclusions

Comparison of TLM and R - V_{bq}

- Scatter in data reduces with increasing carrier concentration
- The contact resistance obtained using TLM is equivalent to the total resistance at high V_{bq} .

A. Venugopal et al., Appl. Phys. Lett. 96, 013512 (2010)

A. Venugopal et al., Appl. Phys. Lett. 96, 013512 (2010)

Contact Resistance as a Function of Metal Type

- No appreciable difference between R_c measured in air vs. R_c measured in vacuum
- No dependence on metal work function
- Possible reasons:

residue at the interface dominates any difference that metal type might have

 \succ charge transfer does not contribute appreciably to the contact resistance (R_c)

Dependence of R_c on W_c

Contact Resistance Values

			Measurement	Contact
Reference	Metal	Pre-/Post Process Conditions	Conditions	Resistance
[44]	Ti/Au	N/A	TLM at 0.25-4.2 K	800 Ω-µm
[15]	Ni	N/A	TLM at room temp	800-2000 Ω- μ m ²
[41]	Cr/Au	PMA (H ₂ /Ar, 300 °C, 1 hr)	CBKR at room temp	10^{3} - $10^{6} \Omega$ -µm
[41]	Ti/Au	PMA (H ₂ /Ar, 300 °C, 1 hr)	CBKR at room temp	10^{3} - $10^{6} \Omega$ -µm
[41]	Ni	PMA (H ₂ /Ar, 300 °C, 1 hr)	CBKR at room temp	500 Ω-µm
[45]	Pd/Au	N/A	TLM at room temp	230 Ω-µm
[45]	Pd/Au	N/A	TLM at 6 K	90-130 Ω-µm
[46] (CVD)	Ti/Pd/Au	N/A	I-V at room temp	2000-2500 Ω-µm
[46] (CVD)	Ti/Pd/Au	5 nm Al followed by etch	I-V at room temp	200-500 Ω-µm
[42] (Epi)	Ti/Au, Ni/Au, Pt/Au, Cu/Au, Pd/Au	PMA (Forming Gas, 450 °C, 15 min)	TLM at room temp	>1000 Ω-μm ²
[42] (Epi)	Ti/Au, Ni/Au, Pt/Au, Cu/Au, Pd/Au	O2 Plasma Clean and PMA (Forming Gas, 450 °C, 15 min)	TLM at room temp	$\sim 7.5 \ \Omega$ - μm^2
[47] (Epi)	Cr/Au	N/A	TLM at room temp	$0.005 \ \Omega$ - μm^2
[47] (Epi)	Cr/Au	N/A	TLM at 673 K	$0.003 \ \Omega - \mu m^2$
[47] (Epi)	Ti/Au	N/A	TLM at room temp	$0.06 \ \Omega$ - μm^2
[47] (Epi)	Ti/Au	N/A	TLM at 673 K	$0.05 \ \Omega$ - μm^2

A. Venugopal, L. Colombo, and E. M. Vogel, "Issues with Characterizing Transport Properties of Graphene Field Effect Transistors," *Solid State Communications* **152**, 1311–1316 (2012)

[15] A. Venugopal, L. Colombo, E.M. Vogel, Applied Physics Letters, 96 (2010) 013512-013513.

[41] K. Nagashio, T. Nishimura, K. Kita, A. Toriumi, Applied Physics Letters, 97 (2010) 143514.

[42] J.A. Robinson, M. LaBella, M. Zhu, M. Hollander, R. Kasarda, Z. Hughes, K. Trumbull, R. Cavalero, D. Snyder, Applied Physics Letters, 98 (2011) 053103-053103.

[44] S. Russo, M.F. Craciun, M. Yamamoto, A.F. Morpurgo, S. Tarucha, Physica E: Low-Dimensional Systems and Nanostructures, 42 (2010) 677-679.

[45] F. Xia, V. Perebeinos, Y.-m. Lin, Y. Wu, P. Avouris, Nat Nano, 6 (2011) 179-184.

[46] A. Hsu, W. Han, K. Ki Kang, K. Jing, T. Palacios, Electron Device Letters, IEEE, 32 (2011) 1008-1010.

[47] V.K. Nagareddy, I.P. Nikitina, D.K. Gaskill, J.L. Tedesco, R.L. Myers-Ward, C.R. Eddy, J.P. Goss, N.G. Wright, A.B. Horsfall, Applied Physics Letters, 99 (2011) 073506.

- Motivation
- A Simple "Universal" Model for Transport in Single Layer Graphene
- Effect of Device Dimensions on Mobility
- Effect of Contacts
- CVD Graphene Vertical Tunnel Transistors
- Conclusions

Optimized CVD Graphene Transfer Process

Improved performance by 80 °C *in-situ* anneal

- Mobility as high as $7200 \text{ cm}^2/\text{Vs}$ at room temperature (65 x 15 μ m²)
- Mobility as high as 12700 cm²/Vs at 77K, highest reported CVD graphene with FET structure

J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, R. S. Ruoff, L. Colombo, R. M. Wallace, and E. M. Vogel, "Reducing Extrinsic Performance-Limiting Factors in Graphene Grown by Chemical Vapor Deposition," ACS Nano, **2012**, 6 (4), pp 3224–3229

Approaching Exfoliated Graphene

Electrical behavior of CVD graphene is similar to that of exfoliated graphene on SiO_2 substrate Mobility (10³ cm²/Vs) 10⁴ Mobility approaches the limit (~10,000 cm^2/Vs) of graphene reported on SiO₂* The mobility is by impurity scattering at low temperature and both phonons and impurities at room temperature. *S. Adam et. al., A self-consistent theory for graphene transport, PNAS. 104, 18392-18397 (2007). 10³ 100 150 200 250 300 J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, R. Measurement Temperature (K)

J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, F. S. Ruoff, L. Colombo, R. M. Wallace, and E. M. Vogel, "Reducing Extrinsic Performance-Limiting Factors in Graphene Grown by Chemical Vapor Deposition," *ACS Nano*, **2012**, *6* (4), pp 3224–3229

Vertical Graphene Tunnel FET Literature

- Tunneling for a graphene-hBN device with 6 ± 1 layers of hBN as the tunnel barrier.
- Room temperature switching ratio:
 - ≈ 50 with h-BN
 - ≈ 10000 with MoS₂^[1]

^{1]}Britnell et al., Science, 335 (2012)

Vertical Graphene Tunnel FET Literature

 Negative differential resistance can be observed when Dirac points of two graphene layers line up^[2-3]

^[2]Feenstra et al., *J. Appl. Phys.,* 111 (2012) ^[3]Reddy et al., *IEEE Dev. Res. Conf.* (2012)

Device Structure

Fabrication process and sample preparation:

- Thermal growth of SiO₂ on p-doped Si
- Wet transfer of CVD graphene
- CVD graphene anneal in 2% forming gas
- Graphene etch in oxygen plasma
- Lift-off of Ni/Au drain metal contacts
- E-beam evaporation of Ti seeding layer on graphene
- Atomic layer deposition of dielectric
- Wet transfer of top graphene layer
- Graphene etch in oxygen plasma
- Lift-off of Ni/Au source metal contacts
- Anneal of top graphene layer in 2% forming gas
- 80 °C anneal of devices in vacuum prior to measurement

Gate Voltage Dependence of Current

$$S = \frac{dI_D}{dV_G} = \frac{\partial I_D}{\partial V_D} \frac{\partial V_D}{\partial V_G}$$

- Subthreshold swing for $TiO_x/AI_2O_3 120 \text{ mV/dec}$
- Subthreshold swing for $TiO_x/TiO_2 70 \text{ mV/dec}$

•
$$I_{ON}/I_{OFF} \approx 10^6$$

Drain Voltage Dependence of Current

- Symmetric current for symmetric barrier
- Drive current extremely low

$$S = \frac{dI_D}{dV_G} = \frac{\partial I_D}{\partial V_D} \frac{\partial V_D}{\partial V_G}$$

- Upon decoupling gate oxide capacitance
 - "subthreshold swing" $(\partial I_D / \partial V_D)^{-1} \approx 27 \text{ mV/dec for}$ TiO_x (2 nm)/TiO₂ (5 nm)
 - 10 mV/dec for TiO_x (1 nm)/Al₂O₃ (1 nm)/TiO₂ (1 nm)

31

- Motivation
- A Simple "Universal" Model for Transport in Single Layer Graphene
- Effect of Device Dimensions on Mobility
- Effect of Contacts
- CVD Graphene Vertical Tunnel Transistors
- Conclusions

Conclusions

• A simple model for the total device resistance indicates that the maximum graphene resistance is approximately independent of mobility and that the minimum resistance is limited by the contact resistance.

- Mobility depends on both the device length and width. Large device dimensions should be used when extracting mobility.
- •Current saturation at large fields is due to the contact resistance.
- The width dependence of contact resistance suggests preferential injection at the edges of graphene.
- A transfer process for CVD graphene has been developed which achieves mobility consistent with exfoliated graphene.
- Vertical tunnel FETs have been fabricated using bilayers of CVD graphene.