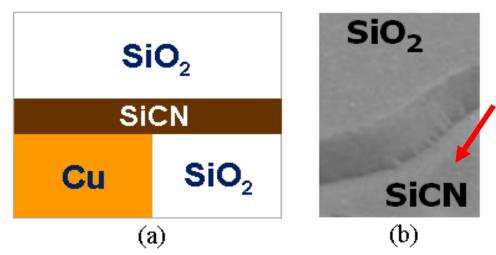
Adhesion Characterization of SiCN/SiO₂ In BEOL And Thin Si/Passivation For TSV Integration Using Nanoscratch Technique

Guohua Wei, Sam Ireland, Junting Liu-Norrod, Jaspreet Gandhi, Irina Vasilyeva, Anurag Jindal, Rita Klein, Tom Mendiola, Harold Krasinski, David Fillmore and Shifeng Lu

> Micron Technology, Inc., 8000 S. Federal Way, Boise, ID, 80707, USA

2013 FCMN, March 27

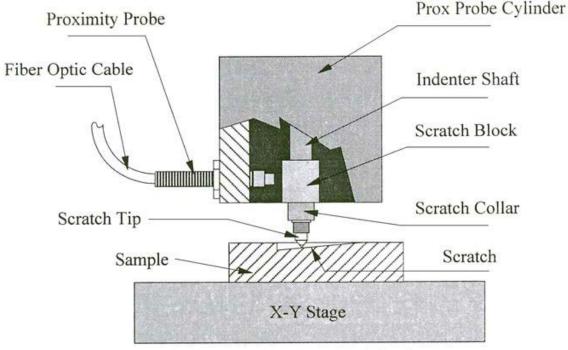

©2013 Micron Technology, Inc. All rights reserved. Products are warranted only to meet Micron's production data sheet specifications. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Dates are estimates only. Drawings are not to scale. Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

Introduction

- Interfacial adhesion is critical to the reliability of microelectronic/nanoelectronic devices.
- The metrology for adhesion characterization plays an important role in enabling process development and optimization to produce interfaces possessing reliable adhesion.
- The 4 Point Bend (4PB) technique is widely accepted as the standard method for quantitatively measuring interfacial fracture energy [1], even for interface with ultra-thin (3 - 4 nm) adjacent films [2].
- Although it is a powerful technique, there exist interfaces and sample geometries that are challenging for 4PB to measure.

Introduction (Cont'd)

> In Back End of Line (BEOL), a dielectric barrier film such as SiCN is adjacent to both Cu and SiO₂ layers. The SiCN/SiO₂ interface adhesion is challenging for 4PB to measure.


SEM image showing the $SiO_2/SiCN$ delamination (part of SiO_2 films are gone).

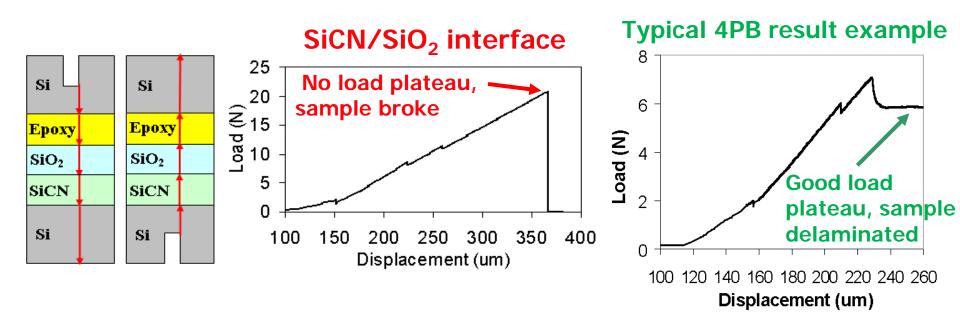
> Through-Silicon Via (TSV) integration involves thinning the Si wafer that contains TSVs and then depositing a passivation layer on the back side of the Si. The adhesion between thinned Si (< 100 μ m) and passivation layer is challenging for 4PB to measure.

Micron

Experimental

Metrology: Ramping-load nanoscratch technique [3-5], a qualitative method for adhesion measurement

The X-Y Stage Moving Directions


Samples

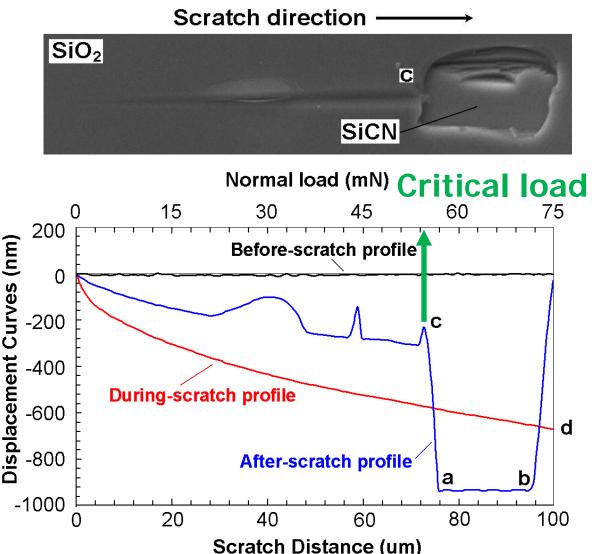
Six Si/SiCN/SiO₂ wafers deposited with different SiCN processes

Four Si/ passivation wafers prepared with various thinning and cleaning methods

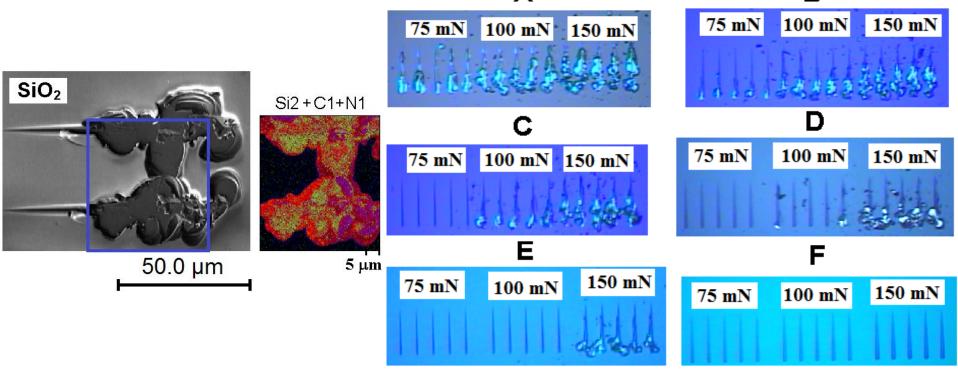
Micron

Adhesion of SiCN/SiO₂ by 4PB

Crack penetrated the SiCN/SiO₂ interface vertically at a high load instead of propagating along it.

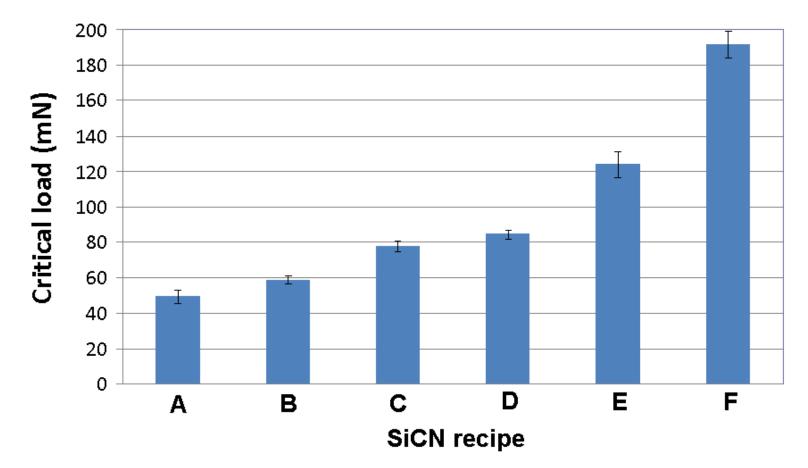

> Both SiCN and SiO₂ are brittle materials. It is possible that the SiCN/SiO₂ interface fracture toughness exceeds $\frac{1}{4}$ of that of SiCN and SiO₂, leading to crack penetration across the interface [6].

Adhesion of SiCN/SiO₂ by Nanoscratch


Point d: maximum in situ depth < SiO₂ thickness scratch tip did not penetrate into the SiCN/SiO₂ interface during the entire nanoscratch test

Point a to b: residual scratch depth close to SiO₂ thickness SiO₂ delaminated

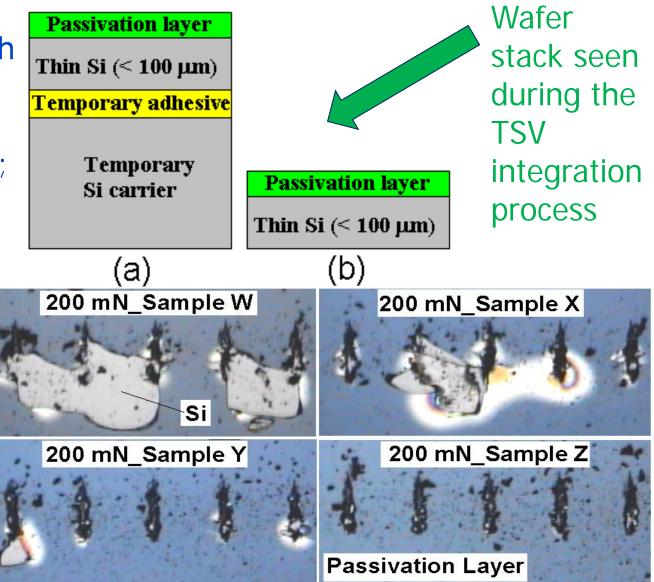
Point c: critical position delamination initiated


Adhesion of SiCN/SiO_A by Nanoscratch

> AES detected Si, C and N signal at the delaminated area, confirming the SiCN/SiO₂ delamination.

➤ The shining regions in the optical images indicate the exposed SiCN.

Adhesion of SiCN/SiO₂ by Nanoscratch



> By changing the SiCN deposition process, the SiCN/SiO₂ adhesion was significantly improved from sample A to F, as shown in both the optical images and critical loads.

Adhesion of Thin Si/Passivation

During the 4PB test, the samples with adhesive (a) were delaminated at the Si/adhesive interface; the samples without adhesive (b) broke.

Nanoscratch test was able to induce Si/passivation delamination and clearly detect the adhesion difference among four wafers with adhesive (a).

Micron

© 2013 Micron Technology, Inc. 9

Conclusions

> The nanoscratch technique is able to characterize the adhesion of SiCN/SiO₂ interface used in BEOL, a "brittle/brittle" interface with strong adhesion, which is challenging for 4PB to measure.

> By controlling the normal load, thus the penetration depth, the nanoscratch-induced stress was controlled to be high enough to delaminate the SiCN/SiO₂ interface, but not sufficient to initiate crack in the underlying SiCN layer.

The capability of nanoscratch technique as a member of the adhesion characterization metrology family is further demonstrated by its successful characterization of the thin Si/passivation adhesion for TSV integration.

References

- 1. R. H. Dauskardt, M. Lane, Q. Ma and N. Krishna, *Eng. Fract. Mech.* **61**, 141-162 (1998).
- 2. R. P. Birringer, P. J. Chidester and R. H. Dauskardt, *Eng. Fract. Mech.* **78**. 2390-2398 (2011).
- 3. W. J. Liu, J. N. Zhou, A. Rar and J. A. Barnard, *Appl. Phys. Lett.* **78**, 1427-1429 (2001).
- 4. G. Wei and J. A. Barnard, *J. Appl. Phys.* **91**, 7565-7567 (2002).
- 5. G. Wei, J. Liu, D. Fillmore, M. Violette and S. Lu, *Mater. Res. Soc. Symp. Proc.* **997**, I10-09 (2007).
- 6. A. R. Akisanya, N. A. Fleck, Int. J. Fract. 55, 29 (1992).

