NANO-SCALE CHARACTERIZATION OF ULK AND BEOL STRUCTURES: MODULUS MAPPING AND WEDGE INDENTATION ADHESION MEASUREMENTS

Fraunhofer

Gesellsc

Kong Boon Yeap, <u>Christoph Sander</u>, Malgorzata Kopycinska-Müller, Martin Gall, Ehrenfried Zschech

Fraunhofer IZFP Dresden, Germany

Lei Chen

Institute of High Performance Computing, Singapore

Marco Jungmann, Reinhard Krause-Rehberg Martin Luther Universität Halle, Germany

Sukesh Mahajan SBA Materials, USA

- Motivation
- Nanoindentation and FE simulation on different pore topology of OSG (organosilicate glass)
- Measurement of the effective CTE of BEoL structure
- Wedge-Indentation on SA-OSG (self-assembled OSG)
- Conclusion

multi-scale database

© Fraunhofer IZFP-D

3D TSV scheme

Integrated Heterogeneous 2-Die Stack

Tier 1 : CMOS Logic SoC

- TSV (connect frontside to backside)
- Very thin Wafer (manage TSV aspect ratio)
- Active face down incl. BEoL

Interface µ-Bump

- Backside RDL Metal (interface to μ-Bump and/or routing to allow offset of μ-Bump vs TSV)
- µ-Bump (Tier to Tier interconnect)
- Very thin underfill

Tier 2 : Commercial Die

- Memory or Analog die, or...
- Frontside Metal (interface to µ-Bump)
- Active face down & Pretty Thin
- Flip Chip (C4) Bump
 - Regular flip chip bump
 - Regular underfill
- Package
 - Regular PCB substrate
 - Regular plastic molding
 - Regular Package BGA Bump

Studied 3D IC

Micro-XCT Courtesy: Peter Krüger

- Young's modulus Nanoindentation
- CTE Coefficient of Thermal Expansion
- Adhesion of Ultra Low K on Silicon Wedge Indentation

Stress engineering in 3D IC structures: Need of database and input for database: Multi-scale materials data

Stress-related phenomena caused by 3D TSV integration influence:

- chip performance (and variability),
- yield and reliability.

Stress management in complex systems requires:

- multi-scale modeling, including accurate MULTI-SCALE MATERIALS DATA
- Input data for simulation
- Model validation (and calibration)

➔ Multi-scale materials database concept ¹

Multi-scale Materials Characterization needed

• Multi-scale (thermo-)mechanical materials data

Young's Modulus

NANO-INDENTATION TECHNIQUE

© Fraunhofer IZFP-D

Motivation

Relations between mechanical properties and structure at microand nano-scale:

- Optimum pore/molecular structure (CPI and dielectric reliability)
- Enable a physics-based IC design

Courtesy of Xiaopeng Xu, Synopsys Inc.

© Fraunhofer IZFP-D

Introduction

Dielectric constant below 2.0 and sufficient mechanical integrity: -> ULK materials are tailored at multiple scales.

Characterization of the multiscale properties – structure relationship

Kim et al. APL, Fan et al. Nat.Mater., Dubois et al. Adv.Mater., Landskorn et al. Science

Indenting at Micro/Nano-scale

- The heart of a Nanoindentation system lies in the actuator and sensors mechanism
- Capacitive or Electrostatic Force Actuation and Depth Sensing
- Best machine performance: FORCE ~30nN, DISPLACEMENT ~0.1nm

Courtesy of Hysitron Inc. and Agilent Technologies

10

© Fraunhofer IZFP-D

High resolution nanomechanical testing

Load-displacement data at single nanometer scale

- Displacement length scale similar to the nanostructure of interest
- Nanoscale structure-property relation

© Fraunhofer IZFP-D

High resolution nanomechanical testing

- Small indentation captures more of the structure-related properties
- Large indentation gives average properties
- Elastic-anisotropy is observed if h < 10nm

12

© Fraunhofer IZFP-D

Self assembly sol-gel template process

OSG with different pore topology

Sample description and experimental results for SA-OSG and CVD-OSG films.

Sample	Target	Actual	Porosity, <i>p</i>	Thickness	Elastic	Cure process
	k	k	(%)	(nm)	Modulus, E	
					(GPa)	
SA-OSG1	1.8	1.80	49	600	3.1 ± 0.1	Thermal
SA-OSG2	2.0	2.08	42	650	3.8 ± 0.2	Thermal
SA-OSG3	2.2	2.21	30	716	5.5 ± 0.3	Thermal
SA-OSG4	2.2	2.25	31	620	6.5 ± 0.3	Thermal
SA-OSG5	2.4	2.37	27	627	6.9 ± 0.4	Thermal
SA-OSG6	2.4	2.41	24	693	7.3 ± 0.3	Thermal
CVD-OSG1	2.4	N.A.	25	530	3.7 ± 0.3	UV & Thermal
CVD-OSG2	2.7	N.A.	12	660	6.6 ± 0.7	Thermal
CVD-OSG3	3.0	N.A.	0	520	13.0 ± 1.2	Thermal

Self-assembled organosilicate glass (SA-OSG) Chemical vapor deposited organosilicate glass (CVD-OSG)

© Fraunhofer IZFP-D

OSG with different pore topology

Pore arrangement: random vs. ordered domains

Lu et al. Nature, Maex et al. JAP, Smirnov et al. JJAP

© Fraunhofer IZFP-D

Elastic deformation of CVD-OSG at nanoscale

CVD-OSG

- Fully elastic
- Fit well with Hertz model

$$P = \left(\frac{4}{3\pi}\right) E_r R^{0.5} (h - h_0)^{1.5}$$

- Similar to isotropic material
- Consistent for dense or porous CVD-OSG

© Fraunhofer IZFP-D

Elastic deformation of SA-OSG at nanoscale (42% porosity)

SA-OSG

- Stiffening effect, 4GPa to 7GPa
- Hertz model fits: Initial 3nm of the P-h curve
- 1 out of 4 indentation locations show "elastic hysteresis"
- Pop-in at 13nm of loading curve
- Pop-out at 4nm of unloading curve.
- Match again below 4nm

© Fraunhofer IZFP-D

Elastic deformation of SA-OSG at nanoscale (42% porosity)

High-frequency dynamic mechanical test:

Atomic-force-acousticmicroscopy (AFAM)

Modulus values resolved at P=1µN to 5µN:

- Stiffening effect
- Elastic hysteresis

Deformation mechanism?

- Elastic stiffening: pore concentration gradient, topography, or nanocavity strengthening.
- Hysteresis: wall-bending or -buckling

© Fraunhofer IZFP-D

Elastic stiffening: Pore concentration gradient

- Pore concentration gradient
- Top layer: porosity>>0.42, thickness<<3nm thick, E<<1GPa
- Bottom layer: porosity=0.42, thickness=500nm, E >10GPa
- Porous structure exceeds the Hashin-Shtrikman upper bound
- Cannot fully account for the observed stiffening effect

Elastic stiffening: Topography effect

Fraunhofer

© Fraunhofer IZFP-D

Elastic stiffening: Nanocavity strengthening

SA-OSG

- Constant pore size, d=2nm
- Elastic stiffening

CVD-OSG

- Broad pore size distribution, 1nm to 10nm
- Constant E

Ouyang et al., Small, Ding et al. JAP.

© Fraunhofer IZFP-D

Hysteresis: Pore wall bending and buckling

- Under compressive load: bending or buckling dominated deformation
- Buckling of pore walls structural instability at critical stress
- For ordered porous structures, buckling of pore walls is possible, depending on the structure orientation
- Elastic hysteresis may be related to pore buckling dominated deformation

- Mathematical models of
 E-p relation with one or
 two variable parameters
 (n, C for foam model and
 p for Nielsen model)
- The variable parameters are indirectly correlated with the porous structure
- Assuming consistent porous structure

 $\rho = 0 - 0.4$ - shell like pores $\rho = 0.3 - 0.7$ - dendrites, ribbons $\rho = 0.6 - 1.0$ - closed pores

PAS-positron annihilation spectroscopy

- 3γ o-Ps annihilation ratio is proportional to porosity and pore interconnectivity.
- A steep increase of the 3γ ratio, when p is increased only by 3% is a clear indication of pore interconnectivity threshold at p=0.3.

IZFP

💹 Fraunhofer

FE simulation of pore topology effect

- Homogeneous normal displacement on XY planes, Dz
- Traction-free boundary condition on XZ and YZ planes
- Average stress divided by average strain
- Theoretical threshold value in the FE model is 0.52

© Fraunhofer IZFP-D

A general map of E/Es vs. p for different porous structure

Pore topology prediction

Threshold porosity

- Threshold value before pores begin overlapping, p_{threshold}=0.3 for the SA-OSG.
- TEM image at p=0.42 shows random overlapping spherical pores with very narrow pore size distribution.

Coefficient of Thermal Expansion CTE

© Fraunhofer IZFP-D

Motivation for effective CTE measurement

CTE – Volumetric balance

FIB cut lines in red

Note: We are measuring an effective CTE value, including some of the SiO_2 at the bottom CA layer, as well as SiCN layers in between.

© Fraunhofer IZFP-D 🛌 🔥 🔥 .

CTE measurements of BEoL: Preparation

First approach to determine CTE for Cu/ULK for a partially deprocessed 3DIC, by combination of FIB cutting and SEM (heating stage holder).

- 🖵 isolate a bar
- separate in two bars of same length
- mount on heating stage and measure the gap in the middle during the experiment

CTE measurements of BEoL: Stack

Full metallization stack

TEOS/SiN Passivation and Al

V5-M6 Thick Cu/(F)TEOS

M1-M5 Cu/ULK

FIB cutting to form two freestanding 50µm »cantilevers« which are free to expand towards the center (only Cu/ULK)

CTE measurements of BEoL: Basics (2)

 $\alpha_l = \frac{\Delta l}{l_0 \cdot \Delta T}$

 $\Delta l = \Delta gap + \Delta Si$ $\Delta gap = gap_{25^{\circ}} - gap_{250^{\circ}}$ $\Delta Si = Si_{25^{\circ}} - Si_{250^{\circ}}$

© Fraunhofer IZFP-D

Effective CTE M1-M5/ULK

© Fraunhofer IZFP-D

CTE – FEA simulation

 $4 x 4 x 1.2 \mu m^3$ part of CTE-bar

a. _ © Fraunhofer IZFP-D

CTE – FEA simulation

deformation in z direction – Cu inline

Cu randomly distributed Cu density from real IC dim. 4x4µm²

© Fraunhofer IZFP-D

CTE – FEA simulation - Cu line direction

FEA results

- effective CTE highly constrained to design
- more information about Cu distribution and orientation needed
- simulated CTE_{eff} ~ 5.5 13 ppm/K matches exp. data

Adhesion WEDGE-INDENTATION TECHNIQUE

© Fraunhofer IZFP-D

Wedge Indentation Experiments

Low-k materials

- Porous Spin-on glass (Methyl-silsesquioxane: MSQ)
- Densed PECVD glass (Black Diamond: BD)

MSQ, JSR LKD5102

R=H, CH₃, ...

BD, Applied Materials

0-si-0

Loading

© Fraunhofer IZFP-D

Indentation Induced Interfacial Fracture

Indentation Induced Interfacial Fracture

© Fraunhofer IZFP-D

Indentation Induced Interfacial Fracture

© Fraunhofer IZFP-D

Interfacial toughness of varying film thicknesses

Varying film thickness results in different delamination shape.

© Fraunhofer IZFP-D

Wedge Indentation – automated image analysis

- Automated indentation and crack area mapping procedure with high local resolution
- Crack area and adhesion calculation software routine.

© Fraunhofer IZFP-D

Wedge Indentation technique

Wedge Indentation results

Sample	Gc (J/m2)	error	E (GPa)	error
k = 2.7	4.24	0.29	8.86	0.63
k = 2.5	3.38	0.31	6.22	0.19
k = 2.4	2.79	0.18	4.42	0.32

Advantages:

- No sample preparation, fully automated.
- Statistical variation that represents the true adhesion variation, not the error of the experiment or sample prep.

4 Point Bending results

Sample	Gc (J/m2)
k = 2.7	4.3
k = 2.5	-
k = 2.4	2.6

Conclusion

- Mechanical test at a length scale similar to the pore size is very sensitive to small changes in the sample.
- Stiffening and hysteresis in **SA-OSG**: Porous structure and deformation mechanism.
- A general map of E/Es vs p has been plotted.
- Effective CTE values have been determined for BEoL stack with different Cu line direction and density.
- The Wedge Indentation method delivers robust adhesion measurements without sample preparation.

Acknowledgement

Sven Niese, Yvonne Ritz, Martin Küttner, Rüdiger Rosenkranz, Zhongquan Liao

task 2246.001: "Multi-Scale Materials Database for 3D TSV Stacks – Input for Stress Simulation and Model Validation"

Thank you!

Fraunhofer Gesellsch

christoph.sander@izfp-d.fraunhofer.de

www.izfp-d.fraunhofer.de