

OpenKWS13-evalplan-v4.docx OpenKWS13 Evaluation Plan
 April 11, 2013

1

OpenKWS13 Keyword Search Evaluation Plan
1 INTRODUCTION
This document contains the evaluation plan for the 2013 Open
Keyword Search (OpenKWS13). The OpenKWS evaluation will
include only a “surprise” language for which the identity is
revealed at the time of release of the data.

Language resources will be provided to developers according to the
Language Specific Peculiarities documents (one per language) and
the Babel Data Specification Document.

The evaluation plan covers the data resources, KWS task
definitions, the Speech-To-Text task definition, file formats both
for system inputs and outputs, evaluation metrics, scoring
procedures, and the results submission protocols.

2 DATA RESOURCES
Data sets and documentation will be provided to researchers in
Babel language packs, Language Specific Peculiarities documents,
and the Babel Data Specification Document. There will be two
audio data distributions for each language, a build and evaluation
pack, along with an IndusDB that contains scoring files.

The “build pack” contains audio, transcripts, and lexica that can be
used for system training and tuning. The development test data
must be used only for parameter tuning and should not be
incorporated into training material during the preparation of
evaluation system models1. Note: the build pack lexicon contains
entries for both the training and development test data. The lexical
items that exist in only the development test data must be excluded
during model training.

The build pack can be used in two ways representing two different
amounts of transcribed material.

• The full language pack (FullLP) – all data resources
provided by the program can be used for development.

• The limited language pack (LimitedLP) – a 10-hour
subset of the transcriptions, metadata, and lexicon of the
full language pack and all the audio data of the full
language pack.

Developers have the option to use private resources; however,
developers must self-report team supplied data resources per
section 3.1.22.

The “evaluation pack” contains only audio data for the evaluation.

The “IndusDB” releases are cumulative tar archives that contain
(1) reference transcripts for the development test material and (2)
keyword files and experiment control files for both the
development and evaluation test material for the languages

1 While an operational system would likely incorporate
development test data to maximize performance, existing
evaluation participants have agreed not to do so in order to focus on
other, language-oriented techniques to improve performance rather
than simply adding data.
2 The Babel PM must acknowledge Team-developed resources
prior to use.

available to the site. (i.e. OpenKWS participants will receive only
surprise language materials.)

3 THE KEYWORD SEARCH TASK
The KWS task is to find all of the occurrences of a “keyword”, a
sequence of one or more words in an original language’s
orthography, in a corpus of un-segmented speech data.

3.1 KWS Evaluation Conditions
The goal of the KWS evaluation is two fold: to build KWS systems
given a limited amount of time and data resources, and to
understand the differences in system performance given common
constraints. To facilitate cross-site system comparisons without
unduly constraining creativity, teams will classify their submissions
across the following three conditions: (1) the build pack of the test
language, (2) the additional language resources brought to bear, and
(3) the amount of test audio re-use.

3.1.1 Test Language Build Pack

The build pack of the test language (which is defined in Section 2)
can be either the FullLP or the LimitedLP.

3.1.2 Additional Language Resources

The use of additional language resources (LRs) will likely impact
system performance. In order to differentiate the amount of
additional resources used, three levels are defined:

• Baseline LRs (BaseLR): The used LR is constrained to
only the test language’s, project-supplied build pack3.

• Non-test language Babel LRs (BabelLR): Additional
LRs consist of any/all Babel-supplied language packs.
No distinction will be made between FullLP and
LimitedLP usage. (Note: This level, and data supporting
it, is only available to Babel performers.)

• Other LRs (OtherLR): Addition LRs consist of team-,
community-, or pre-existing-LRs.

3.1.3 Test Audio Re-Use

Processing of the audio after knowledge of the keywords will likely
impact performance. In order to differentiate systems that do not
reprocess the audio from those that do, two levels are defined:

• No test audio re-use (NTAR): the system does not re-
process the test audio after keywords are provided4.

• Test audio re-use (TAR): the system re-processes the
audio with knowledge of the search keywords.

3 BaseLR is a “flat start” condition where models may only be
initialized with build pack data. Participants are encouraged to
contact NIST if they are uncertain if a technique meets this
stringent guideline or if they are unable to build a BaseLR system.
4 In practice, developers should follow the spirit of the rule. Re-
processing a spectral features derived from the audio would be an
TAR system even though the “audio” is not reprocessed.

OpenKWS13-evalplan-v4.docx OpenKWS13 Evaluation Plan
 April 11, 2013

2

3.1.4 Required and Optional Evaluation Conditions

For the surprise language, all participants must submit a
FullLP+BaseLR+NTAR system. Babel performers are required to
submit a LimitedLP+BaseLR+NTAR system while OpenKWS13
participants are encouraged to submit a system for the
LimitedLP+BaseLR+NTAR condition.

3.1.5 Primary vs. Contrast Systems

For a given combination of the three conditions, a site may choose
to submit multiple runs sharing the same levels. Sites must
designate one of their multiple runs for single ensemble of
condition levels as their “primary” run the rest as “contrastive”
runs. The primary run should be the run the site expects to perform
best. For example, a team may submit 2 primary runs, one for
FullLP+BaseLR+NTAR and one for LimitedLP+BaseLR+NTAR

3.2 Keywords
Keywords, a sequence of contiguous lexical items, will be specified
in the language’s UTF-8 encoded, native orthographic
representation as typified in the provided language resources.
Example keywords are “grasshopper”, “New York”, “overly
protective”, “Albert Einstein”, and “Giacomo Puccini”. All
transcribed words as specified by the Babel Data Specification
Document are potential keywords.

The existence of a spoken keyword will be judged solely on the
orthographic transcription of the speech. Therefore:

• Homographs will be not be differentiated.

• Morphological variations of a keyword will not be
considered positive matches.

When possible, transcript comparisons will be case insensitive
(e.g., /bill/ and /Bill/ are not differentiated).

Reference occurrences will be found automatically by searching the
reference transcript supplied in an RTTM file5. There are two
methods of determining the presence of a keyword production
based on the style of alignment and scoring protocol.

For keyword occurrence alignments, the following rules apply
(Section 5.1):

1. A keyword is a contiguous sequence of RTTM LEXEME
records of all LEXEME subtypes including hesitations,
filled pauses, fragments, and truncations.

2. Every word in a keyword must be from the same file and
channel.

3. Non-lexical tokens, lip-smack, click, dtmf, etc., are
ignored during the search for keywords.

4. The silence gap between adjacent words in a keyword
must be ≤ 0.5 second.

For inferred-segment alignment, the following rules apply

(Section 5.2):
1-3. Rules 1-3 for occurrence alignments
4. System-identified keywords are assigned to the segment

containing the keyword’s mid-point.

5 See Appendix C for a definition of RTTM files.

3.3 Transcription Normalization
Each language will require differing text normalization strategies to
accommodate language specific transcription practices. The
auxiliary document, “Text Normalizations for the Babel KWS and
STT Evaluations”6, describes text normalization steps for each
language.

3.4 Non-Scored Regions
Segments containing the <overlap> and <prompt> tags will not be
scored, which means that all system-generated output during the
specified segment will be ignored during scoring.

3.5 System Output
For each keyword supplied to the system, a KWS system will
report the following information for each putative occurrence.
- the begin and end time of the keyword occurrence
- a score indicating how likely the keyword exists with more

positive values indicating more likely occurrences, and
- a hard (YES/NO) decision as to whether the detection is

correct.
A system output will be considered correct if a reference keyword
appears in the transcript at a time corresponding to the system
generated time as described in Section 5.
The score for each keyword occurrence can be of any scale (NIST
recommends a log likelihood7.) However, since the scores will be
used to derive keyword-weighted Detection Error Tradeoff (DET)
curves, scores across keywords should be commensurate to ensure
minimum DET curves; otherwise, a non-optimal DET Curve will
be generated.

Developers are encouraged to over-generate putative keyword
occurrences beyond the system’s hard decision boundary so that
DET curves cover a wider range of operating points.

3.6 Scoring Command
The command to score a KWS system is as follows. Appendix A
defines the file types used in this command.

% KWSEval -e <ECF> -r <RTTM> -t <KWLIST> \

-s <KWSLIST> -c –o –b –d \

-f <RESULTROOT>

4 THE SPEECH TO TEXT TASK
The Speech-To-Text (STT) task is to produce a verbatim, case
insensitive transcript of uttered lexical items. Systems will output a
stream of RTTM lexical tokens reporting the token’s begin and end
time within the recording, a confidence score value [0,1] indicating
the system’s confidence that the token is correct, and lexical sub-
type type information.

6 The “Text Normalizations for the Babel KWS and STT
Evaluations” document will be available on the evaluation website
along with this document.
7 The log likelihood, with base e, is suggested, so that the system
may be evaluated in a variety of application scenarios that exhibit
different prior probabilities

OpenKWS13-evalplan-v4.docx OpenKWS13 Evaluation Plan
 April 11, 2013

3

The STT task is a diagnostic task to quantify the performance of
underlying, word-based STT in the context of performing KWS.
Therefore, systems are not expected to be optimized for STT error
but rather optimizing STT for KWS.

4.1 STT Evaluation Conditions
STT systems will be differentiated using the two KWS data
conditions: (1) the test language build pack and (2) the additional
language resource conditions.

Sites who use word-based models are encouraged to submit STT
outputs supporting their KWS systems. As a voluntary task, there
are no required STT evaluation conditions levels that participants
must submit runs for.

The “primary” vs. “contrastive” definitions for the KWS task
apply to the STT task.

4.2 Lexical Tokenization
Lexical tokenization must follow the standard used in the language
pack.

4.3 Lexical Token Scoring
The following rules define scored tokens (tokens that must be
recognized), optionally deletable tokens (tokens that may be
omitted by the STT system without penalty), and non-scored tokens
(tokens removed from both the reference and STT transcripts prior
to scoring).

• Scored tokens
o All words transcribed as specified by the Babel Data

Specification Document.

• Optionally deletable tokens
o Fragments (marked with a -) in the reference transcript.

System tokens with token-initial text matching the
fragment’s text will be scored as correct. (e.g. /theory/
would be correct for fragment /th-/).

o The hesitations tags (<hes>).

• Non-scored tokens
o Codeswitch tags.
o Speaker change tags.
o Unintelligible speech tags.
o Non-lexical punctuation.
o Non-lexical, speaker-produced sounds (<lipsmack>,

<cough>, <breath>, etc. as defined in the data
specification document).

4.4 Non-scored Speech Segments
Segments containing the <overlap>, unintelligible [(()) tags], and
<prompt> tags will not be scored. In addition, segments containing
transcript tokens that were not forced aligned in the reference will
not be scored.

4.5 Scoring Procedures
The NIST SCTK toolkit will be used to evaluate the performance
of STT systems. System-generated STT output must be in CTM
format. (See Appendix C) Assuming the SCTK tools have been
installed and added to your path variable, the following commands
will convert an RTTM formatted system output to a CTM-
formatted file for scoring with sclite.

% rttm2ctm.pl < file.rttm > file.ctm

% sclite –h file.ctm ctm –t file.stm stm -o sum rsum pra -D -F
-e utf-8

4.6 Required and Optional STT Evaluation
Conditions

Babel performers are required to submit STT system outputs used
for all primary KWS systems while OpenKWS13 participants are
encouraged to submit STT system output(s) for their KWS
submissions using the same system ID as their KWS submission so
they can be linked together.

5 KEYWORD SEARCH EVALUATION
Keyword detection performance will be measured as a function of
Missed Detection and False Alarm error types.

Two different scoring protocols will be used for KWS scoring. The
first, “Keyword Occurrence Scoring”, is the official metric for
performance assessment, and the second, “Inferred Segment
Scoring”, is an experimental protocol. Both protocols use the same
three steps to evaluate a system: (1) reference-to-system keyword
alignment, (2) performance metric computation, and (3) diagnostic
measure computation.

5.1 Keyword Occurrence Scoring Protocol
The keyword occurrence scoring protocol evaluates system
accuracy based on a temporal alignment of the reference keywords
to system-hypothesized keywords.

5.1.1 Reference-to-System Keyword Occurrence
Alignment

KWS systems detect keyword occurrences in un-segmented audio.
In order to evaluate the performance of the system, the first step is
to find the minimal cost, 1:1 alignment (or mapping) between the
known locations of the reference occurrences for a given keyword
and the putative system occurrences for a given keyword. The
KWS evaluation uses the Hungarian Solution to the Bipartite Graph
matching problem8 to compute the 1:1 mapping using the kernel
function K() that numerically compares the mapping of system and
reference occurrences, as well as the missed detections and false
alarms.

The kernel function first determines if the ref/sys occurrences are
mappable by requiring the sys occurrence to be within a temporal
tolerance collar (ΔT) of the reference occurrence. Specifically, the
midpoint of the system occurrence must be within the interval from
ΔT before the beginning to ΔT after the end of the reference
occurrence as determined by forced alignment of the reference
transcript to the audio. If the occurrences are mappable, the
comparison of a ref/sys pair is 1 plus a weighted sum of the
occurrences’ temporal overlap and the percentile of the system
occurrence’s detection score. The formulas are as follows.

8 Harold W. Kuhn, "The Hungarian Method for the assignment
problem", Naval Research Logistic Quarterly, 2:83-97, 1955.

OpenKWS13-evalplan-v4.docx OpenKWS13 Evaluation Plan
 April 11, 2013

4

K(Or,i)= 0; if ref occurrence i is not mapped (i.e., a miss)
K(Os, j)= !1; if sys occurrence j is not mapped (i.e., a false alarm)

K(Or,i,Os, j) =
UnMapped;

if Mid(Os, j)> En(Or, j)+"T or
if Mid(Os, j)< Be(Or, j)!"T

#
$
%

&%

1+!tm *TmCgr(Or,i,Os, j)+!scr *ScrCgr(Or,i,Os, j)

#

$
%

&
%

Where:

Or,i = the reference occurrence i of the keyword
Os, j = the system occurrence j of the keyword
Mid()= the midpoint of an occurrence
En()= the ending time of an occurrence
Be()= the beginning time of an occcurence

TmCgr() =
Min(En(Os, j),En(0r,i))!Max(Be(Os, j),Be(Or,i))

Max(0.00001,En(0r,i)!Be(0r,i))

ScrCgr() =
Scr(Os, j)! LowestScr(Syss)

Max(0.0001,LargestScr(Syss)! LowestScr(Syss))
"T = The temporal tolerance collar ; 0.5 second
!tm = The weight for time congruence ; 1e-08
!scr = The weight for decision scores ; 1e-06
LowestScr(Syss) = The smallest detection score of the keyword
 of System s
LargestScr(Syss) = The largest detection score of the keyword
 for System s

Including ScrCgr() ensures that if there are two system
occurrences that are both permissible matches to only one known
occurrence (and vice versa), then the mapping will remain 1:1
while minimizing the error rates.

5.1.2 Keyword Occurrence Performance Metric
Computation

Overall system detection performance will be measured in terms of
an application model by assigning a value to each correct output
and a cost (i.,e., negative value) to each incorrect output via the
term-weighted value function9.

5.1.2.1 Term Weighted Value
Term-weighted value (TWV) is 1 minus the weighted sum of the
term-weighted probability of missed detection (PMiss(θ)) and the
term-weighted probability of false alarms (PFA(θ)).

TWV !() =1! PMiss !()+! "PFA "()#$ %&
 where:

9 The TWV metric uses “Term” in its name. For the KWS
evaluation, “keyword” and “term” mean the same thing.

! = The criteria used to determine if the system-
 detected kw is scored. Various methods will be used.

PMiss (!) = NMiss (kw,!) / NTrue(kw)[]
kw=1

K

! K

PFA (!) = NFA (kw,!) / (NNT (kw))[]
kw=1

K

! K

K = # of keywords with 1 or more reference occurrences

! = C
V
" Prkw

#1#1()
C = The cost of an incorrect detection; defined as 0.1
V = The value of a correct detection; defined as 1
Prkw = The prior probability of a keyword; defined as 10-4

NMiss (kw,!) = # of missed detection of keyword kw for !
NFA (kw,!) = # of false alarms of keyword kw for !
NTrue(kw) = # of reference occurrences of keyword kw
NNT (kw) = # of non-target trials for keyword kw

Since there is no discrete specification of “trials” in un-segmented
audio, the number of Non-Target trials for a term, NNT(term), will
be defined somewhat arbitrarily to be proportional to the number of
seconds of speech in the data under test. Specifically:

NNT kw() = ntps *Tspeech ! Ntrue(kw)

where:
ntps is the number of trials per second of speech

(ntps will be set arbitrarily to 1), and
Tspeech is the total amount of evaluated speech in the test data.

Non-evaluated audio does not included in Tspeech. The
unit is seconds. The following domain specific rules
apply to calculating Tspeech:
• For Babel’s split-channel conversational telephone

speech (splitcts), 0.5 the duration of each channel is
used.

The TWV of a perfect system is 1. A system that outputs nothing
is 0. TWV can go to -∞ since false alarm errors are included in the
measure.

5.1.2.2 Actual TWV

TWV can be calculated through the complete range of a
system’s detection score values. In order to ensure
developers optimize system performance to the same
operating point, the KWS evaluation uses the TWV for
system occurrences with ‘YES’ hard decisions as the
primary evaluation measure. This measure is referred to as
Actual TWV.

5.1.3 Keyword Occurrence Diagnostic Measures

The KWS evaluation will experiment with several diagnostic
evaluations methods and measures. This section describes the
current set of diagnostics.

OpenKWS13-evalplan-v4.docx OpenKWS13 Evaluation Plan
 April 11, 2013

5

5.1.3.1 Detection Error Tradeoff

The detection scores output by a system permits error analysis over
a wide range of operating points by computing error rates for all
detection score thresholds (i.e. θ = {detection scores}). The
resulting Detection Error Tradeoff (DET) curve visualizes the
tradeoff between the probabilities of missed detection versus false
alarm.

5.1.3.2 Maximum TWV

“Maximum Term-Weighted Value” (MTWV) is, based on an an
analysis of the system’s DET curve, the maximum TWV found
over the range of all possible values of θ. The difference between
ATWV and MTWV, and the difference between the detection score
thresholds for them, are an indication of how well the hard decision
threshold was set.

5.1.3.3 TWV Including Keywords with No Reference
Occurrences

TWV is calculated over terms with reference occurrences because
PMiss(θ) (NMiss(kw, θ)/NTrue(kw)) of a non-occurring keyword is
undefined when NTrue(kw) is 0. As a variant, TWV can be
calculated using a different PFA(θ) that incorporates false alarms for
keywords without reference occurrences.

[]

[]

keywords all of #'
soccurrence reference moreor 1 with keywords of #

'))()(/(),()(

)(/),()(

'

1

1

=

=

−=

=

∑

∑

=

=

K
K

KkwNkwNkwNP

KkwNkwNP

K

kw
TrueNTFAFA

K

kw
TrueMissMiss

θθ

θθ

When non-occurring keywords are included in the TWV
calculations, labels will indicate the modified formula was used.

5.2 Inferred Segmentation Keyword Search
Evaluation Procedure

The Inferred-Segmentation (IS) keyword search evaluation
procedure will be used as an alterative to the keyword occurrence
alignment procedure as outlined in Section 5.1.

The IS procedure is similar to the occurrence alignment approach
in that keywords are evaluated independently and reference
keywords are identified in the same manner. However, the two
methods differ in step 1, the alignment phase, and in step 2, the
metric computation formulas. Step 3, diagnostic computation, is
essentially the same except that it uses the modified metric
formulas.

5.2.1 Inferred Segmentation Reference-to-System
Alignment

After the reference keywords are identified, both the reference and
system identified keywords are mapped onto the speech/non-speech
segmentation of the recording. The reference segmentation will
be modified to ensure no keywords span speech/non-speech
boundaries. The system identified keywords are mapped to the
segments using the temporal mid-point.

The speech/non-speech segments become the “trials” (the unit of
performance measurement) for computing system performance.
The following summarizes how the segments are scored:

• Correct Detection: a segment containing one or more
reference keyword occurrence(s) and one or more
midpoints of system identified keyword occurrence(s).

• Correct Non-Detection: a segment not containing a
reference keyword occurrence or a midpoint of system
identified keyword occurrence.

• Missed Detection: a segment containing one or more
occurrence(s) of a reference keyword but no midpoints of
system identified occurrences of that keyword.

• False Alarm: a segment not containing an occurrence of
a reference keyword but containing one or more
midpoints of system identified occurrences of that
keyword.

5.2.2 Inferred Segmentation Performance Metric
Computation

Term Weighted Value measures false alarms as a fraction of false
alarms per expected number of non-target trials. The use of
speech/non-speech segments provides a trial counting mechanism
that enables the computation for segment-based missed detection
and false alarm probabilities. The two measures are combined in
the Segment-based Term Weighted Value (STWV).

5.2.2.1 Segment-based Term Weighted Value
Segment-based term-weighted value (STWV) is a 1 minus the
weighted sum of the term-weighted probability of missed detection
segments (PMissSeg(θ)) and the term-weighted probability of false
alarm segments (PFASeg(θ)).

STWV !() =1! PMissSeg !()+! "PFASeg "()#$ %&

Where:

! = The criteria used to determine if the system-
 detected kw is detected in a segment. Various
 methods will be used.

PMissSeg(!) = NMissSeg(kw,!) / NTarSeg(kw)!" #$
kw=1

K

% K

PFASeg(!) = NFASeg(kw,!) / NNonTarSeg(kw)!" #$
kw=1

K

% K

K = # of keywords with 1 or more reference occurrences

" = C
V
& Prkw

'1'1()
C = The cost of an incorrect detection; defined as 0.1
V = The value of a correct detection; defined as 1
PrkwSeg = The prior probability of segment with

 a keyword ; defined as 10-4

NMissSeg(kw,!) = # of missed detection segments of kw for !
NFA (kw,!) = # of false alarm segments of kw for !
NTarSeg(kw) = # segments containing kw
NNonTarSeg(kw) = # segments not containing kw

5.2.3 Inferred Segmentation Diagnostic Measures

The same diagnostic methods as described in Section 5.1.2 and
5.1.3 will be used for the inferred segmentation scoring protocol.

OpenKWS13-evalplan-v4.docx OpenKWS13 Evaluation Plan
 April 11, 2013

6

6 SPEECH-TO-TEXT EVALUATION
STT performance will be measured as a function of deletion,
insertion and substitution error types. System evaluation will occur
in three steps: (1) text normalization, (2) reference-to-system token
alignment, (3) performance metric computation, and (4) diagnostics
measure computation.

6.1 Token normalization
Text will be pre-filtered to appropriately handle the speech
phenomena as described in Section 3.2.

6.2 Token Alignment
Scorable tokens, as defined in Section 3.2, are aligned using the
Dynamic Programming solution to string alignments. The weights
used for substitutions, insertions, deletions, and correct recognition
are 4, 3, 3, and 0 respectively.

6.3 STT Performance Metric Computation
An overall Word Error Rate (WER) will be computed as the
fraction of token recognition errors per reference token:

WER = NDel + NIns + NSubst() NRef

where

NDel = the number of unmapped reference tokens,

NIns = the number of unmapped STT output tokens,

NSubst = the number of mapped STT output tokens with non-
matching reference spelling, and

NRef = the maximum number of reference tokens10

6.4 Diagnostic Measures for STT
This section describes the current set of STT diagnostics.

6.4.1 Confidence Score Normalized Cross Entropy

As an additional performance measure, the quality of the token
confidence scores will be evaluated. The confidence score
represents the system’s estimate of the probability that the output
token is correct and must have a value between 0 and 1 inclusive.

The performance of this confidence measure will be evaluated
using Normalized Cross Entropy (NCE). It is assumed that the role
of the confidence score is to distribute the probability mass of a
correct recognition (i.e. the percent correct) across all the system
transcribed words.

NCE = Hmax + log2(p̂(w))
w=1

CorrectWord

! + log2(1" p̂(w))
w=1

IncorrWord

!
#
$
%

&
'
(

Hmax

Where:

10 NRef includes all scorable reference tokens (including optionally
deletable tokens) and counts the maximum number of tokens. Note
that NRef considers only the reference transcript and is not affected
by scorable tokens in the system output transcript, regardless of
their type.

Hmax = !n log2 (pc)! (N ! n)log2 (1! pc)
n = the number of correct system words
N = the total number of system words
pc = n / N; the average prob. that a system word is correct

p̂(w) = the confidence of system word w

6.4.2 STT Character Error Rate

For some languages, (e.g., Cantonese and Mandarin) Character
Error Rate (CER) is a useful method to avoid the ambiguities of
word segmentation procedures in the scoring process. In order to
compute CER, both the reference and STT transcripts are modified
by converting multi-character, non-roman text tokens into a
separate text token for each character. After conversion, the WER
error metric is applied in the character context.

6.4.3 STT Syllable Error Rate

For languages where lexical items include multiple syllables,
Syllable Error Rate (SER) will be calculated by transforming both
the reference transcript and system-generated transcripts into
syllable units using the lexicon provided in the language packs.

Syllables will be constructed by concatenating phones of a syllable
into a single lexical unit. When multiple pronunciations exist for a
lexical item, the first pronunciation will be used for the reference
transformations (to enforce a common reference across systems)
and all possible pronunciations will be used for the system-
generated transcripts.

After conversion, the WER error metric is applied in the syllable
context.

7 EVALUATION RULES
The following rules apply to all evaluation conditions.

7.1.1 Keyword Interactions

Each keyword must be processed separately and
independently during keyword detection. The system-
generated detection outputs for a keyword (as derived from
processing the test data audio) must not influence the
detection of other keywords. The search results for each
keyword are to be output prior to performing detection on
the next keyword.

7.1.2 Human Interactions with Test Audio

No manual or human interaction with the test audio data is allowed.

8 PUBLICATION OF RESULTS
 Publication of vetted results is encouraged and should be in
accordance with your Babel contract.

9 DATA STRUCTURES AND FORMATS
System output will be stored in an XML-formatted text files as
specified in Appendix A.

10 SUBMISSION OF RESULTS
Submissions will be made via the Babel Scoring server as specified
in Appendix B which explains the submission protocol. In addition
to the system output results as specified above, a system description
is also required for each submission. This description must include

OpenKWS13-evalplan-v4.docx OpenKWS13 Evaluation Plan
 April 11, 2013

7

a detailed description of the architecture and algorithms used in the
system.

In order to simplify writing system description and to make system
descriptions somewhat homogenous across sites, participants are
encouraged to fully document one of their primary systems (NIST
suggests the primary, surprise language, FullLP+BaseLR+NTAR
configuration or similar) and then document differences in the rest
of the system descriptions.

11 SCHEDULE
Consult evaluation schedule on the OpenKWS13 web site.

OpenKWS13-evalplan-v4.docx OpenKWS13 Evaluation Plan
 April 11, 2013

8

Appendix A: KWS Evaluation Implementation Details

Figure 1 shows the system input/output files and how they relate to
system operation and evaluation. This appendix documents the file
formats for each input and system output.

Figure 1: System and evaluation inputs and outputs

The three input files to the site-implemented KWS system are as
follows11.

• Audio files: SPHERE formatted waveform files
organized as originally distributed.

Experiment Control File (ECF): ECF files define the
excerpts within audio files to be used for specific
experiments and the language/source type of each file.

• KWlist: The list defines the keywords to search for in the
indexed corpus.

Once the site’s indexer and searcher completes processing the data,
a KWSList file (Appendix A.4) is generated and used by the
evaluation code along with the reference RTTM (Appendix C) file
to produce the performance analysis reports.

The remainder of this appendix defines the input and output file
formats.

A.1 Experiment Control Files

Experiment Control Files (ECF)s are the mechanism the evaluation
infrastructure uses to specify time regions within an audio
recording, the language, and the source type specified for the
experimental condition. A system input ECF file will be provided
for all tasks to indicate what audio data is to be indexed and
searched by the system. The evaluation code also uses an ECF file
to determine the range of data to evaluate the system on. In the
event a problem is discovered with the data, a special scoring ECF
file will be used to specify the time regions to be scored.

The ECF file is an XML-formatted text file.

ECF File Naming

11 The diagram is a stylized representation of site implemented
system operation and developers are free to organize their systems
at their discretion.

ECF files end with the ‘.ecf.xml’ extension.

ECF File Format Description

An ECF consists of two hierarchically organized XML nodes:
“ecf”, and “excerpt”. The XML scheme for a ECF file can be
found in the F4DE software package. The following is a conceptual
description of an ECF file.

The “ecf” node contains a list of “excerpt” nodes. The “ecf” node
has the following attributes:

• source_signal_duration: a floating point number
indicating the total duration in seconds of recorded
speech

• version: A version identifier for the ECF file

• language: language of the original source material.

Each “excerpt” tag is a non-spanning node that specifies the excerpt
from a recording that is part of the evaluation. The “excerpt” has
the following attributes:

• audio_filename: The attribute indicates the file id,
excluding the path and extension of the waveform to be
processed.

• source_type: The source type of the recording either
“bnews”, “cts”, “splitcts”, or “confmtg”.

• channel: The channel in the waveform to be processed.

• tbeg: The beginning time of the segment to processes.
The time is measured in seconds from the beginning of
the recording which is time 0.0.

• dur: The duration of the excerpt measured in seconds.

For example:

<ecf source_signal_duration=”340.00”

version=”20060618_1400” language=”english” >
<excerpt

audio_filename=”audio/dev04s/english/confmtg/NIST_2
0020214-1148” channel=”1” tbeg=“0.0” dur=”291.34”
source_type=”confmtg”/>

<excerpt
audio_filename=”audio/eval03/english/bnews/ABC_WN
N_20020214_1148.sph” channel=”1” tbeg=”0.0”
dur=”291.34” source_type=”bnews”/>

…
</ecf>

A.4. KWList Files

A Keyword List file is an XML-formatted text file that defines the
search keywords to be processed by a KWS system. Each keyword
is identified by KWID which is used to track keywords through the
evaluation process and specify keyword texts with a flexible set of
attributes.

Keyword List File Naming

Keyword List files end with a .kwlist.xml extension.

Keyword List File Format Description

OpenKWS13-evalplan-v4.docx OpenKWS13 Evaluation Plan
 April 11, 2013

9

The Keyword List file consists of three hierarchically organized
XML nodes: “kwlist”, “kw”, and potentially several nodes under
“kw”. The XML scheme for a KWList file can be found in the
F4DE software package. The following is a conceptual description
of a KWList file.

The “kwlist” node contains a list of “keyword” nodes. The
“kwlist” has the following attributes:

• ecf_filename: The basename12 of the ECF file associated
with this Kwlist file.

• version: A version identifier for the file.

• language: Language of the original source material.

• encoding: The character encoding of the text data. Only
“UTF-8” is currently accepted.

• compareNormalize: The function used to normalize the
text before comparison. Current legal values are blank
(which applies no normalization) and “lowercase”.

Each “kw” node is a spanning XML tag that contains a set of
additional XML nodes to specify the keyword. There is a single
attribute ‘kwid’.

• kwid: A string identifying the keyword.

The “kw” tag contains two sub-nodes “kwtext” (which is the
keyword text) and the “kwinfo” tag (which contains a flexible
attribute/value structure).

The “kwtext” tag is a spanning tag than contains the CDATA
(character) string for the keyword. The leading and trailing white
space of the keyword string is NOT considered part of the keyword
while single internal white space(s) are.

The “kwinfo” tag is a spanning tag that contains one or more “attr”
tags that specify an attribute name and value with a “name” and
“value” tag respectively. Both contents of “name” and “value” tags
are CDATA.

The following is an example KWlist file:

<kwlist ecf_filename=”english_1” version =”20060511-0900”
 language=”english” encoding=”UTF-8”

compareNormalize=”lowercase”>
<kw kwid=”dev06-0001”>

<kwtext>find</kwtext>
 <kwinfo>

 <attr>
 <name>NGram Order</name>
 <value>1-grams</value>
 </attr>

 </kwinfo>
 </kw>

<kw kwid=”dev06-0002”>
<kwtext>many items</kwtext></kw>
 <kwinfo>
 <attr>
 <name>NGram Order</name>

12 The basename of a file excludes the directory names and
extensions. For example the basename of “the/directory/file.txt” is
“file”.

 <value>2-grams</value>
 </attr>
 </kwinfo>
<./kw>

</kwlist>

A.5 KWSList Files

The KWSList file is an XML-formatted file produced by a KWS
system. It contains all the runtime information as well as the search
output generated by the system.

KWSList File Naming

Since KWSLists are produced by a KWS system, they apply to a
particular ECF and KWlist. KWSList file are named with the
.kwslist.xml extension.

KWSList File Format Description

A KWSList file is an XML file with three hierarchically organized
XML nodes: “kwslist”, “detected_kwlist”, and “kw”. The
“kwslist” records the system inputs and parameters used to generate
the results. The “detected_kwlist” is a collection “kw” nodes which
are the putative detected keywords. The XML scheme for an
KWSList file can be found in the F4DE software package. The
scheme is the authoritative source. Below is a content description of
the XML nodes and attributes.

The “kwslist” node contains a set of “detected_kwlist” nodes: one
for each search keyword. The “kwlist” node contains the five
attributes:

• kwlist_filename: The name of the KWList file used to
generate this system output.

• language: Language of the source material.

• system_id: A text field supplied by the participant to
describe the system.

Each “detected_kwlist” node contains the system output for a single
keyword. It consists of a set of “kw” nodes; each “kw” node
specifying the location of single detected keyword. The three
attributes of a “detected_kwlist” are:

• kwid: The keyword id from the KWlist file.

• search_time: (optional for backward compatibility) A
floating point number indicating the number of CPU
seconds spent searching the corpus for this particular
keyword.

• oov_ count: An integer reporting the number of tokens in
the keyword that are Out-Of-Vocabulary (OOV) for the
system and/or the training and development language
data. If the system does not use a word dictionary, the
value should be “NA”.

Each “kw” node is a non-spanning XML node that contains the
location and detection score for each detected keyword. The six
attributes are:

• file: The basename of the audio file as specified in the
ECF file.

• channel: the channel of the audio file were the keyword
was found.

• tbeg: The beginning time of the keyword expressed in
seconds with 0.0 being the beginning of the audio
recording.

OpenKWS13-evalplan-v4.docx OpenKWS13 Evaluation Plan
 April 11, 2013

10

• dur: The duration of the keyword in seconds.

• score: The detection score indicating the likelihood of
the detected keyword.

• decision: [YES | NO] The binary decision of whether or
not the keyword should have been detected to make the
optimal score.

An example KWSList file is:

<kwslist

kwlist_filename=”expt_06_std_eval06_mand_all_spch_e
xpt_1_Dev06.tlist.xml”
language=”english”

system_id=”Phonetic subword lattice search”>
<detected_kwlist kwid=”dev06-0001”
 search_time=”24.3” oov _count=”0”>
 <kw file=”NIST_20020214-1148_d05_NONE”
 channel=”1” tbeg=”6.956” dur=”0.53”

score=”4.115” decision=“YES“/>
 <kw file=”NIST_20020214-1148_d05_NONE”
 channel=”1” tbeg=”45.5” dur=”0.3” score=”4.65”

decision=“NO“/>
</detected_kwlist>
</kwslist>

OpenKWS13-evalplan-v4.docx OpenKWS13 Evaluation Plan
 April 11, 2013

11

 Appendix B: System Output Submission and Scoring
Babel	 will	 make	 extensive	 use	 of	 the	 NIST	 Indus	 scoring	 server.	 	 There	 are	 4	 steps	 to	 submit	 a	 system	 output	 for	 scoring:	 (1)	
evaluation	 condition	 specification	 via	 an	 Experiment	 Identifier,	 (2)	 system	 output	 formatting	 and	 naming,	 (3)	 system	 documentation	
via	 a	 system	 description,	 and	 (4)	 scoring	 locally	 or	 via	 the	 Indus	 scoring	 server.	

B.1	 	 Experiment	 Identifiers	

The	 packaging	 and	 file	 naming	 conventions	 for	 system	 outputs	 rely	 on	 Experiment	 Identifiers	 (EXPID)	 to	 organize	 and	 identify	 the	
files	 for	 each	 evaluation	 condition	 and	 link	 the	 system	 inputs	 to	 system	 outputs.	 	 Since	 EXPIDs	 may	 be	 used	 in	 multiple	 contexts,	
some	 fields	 contain	 default	 values.	 The	 following	 section	 describes	 the	 EXPIDs.	

The	 following	 Extended	 Backus-‐Nuar	 Form	 (EBNF)	 describes	 the	 EXPID	 structure.	 	 	

EXPID :== KWS13_<TEAM>_<CORPUS>_<PARTITION>_<SCASE>_<TASK>_<LP>_<LR>_<AUD>_<SYSID>_<VERSION>

Where:

<TEAM> :== your team name. Only alphanumerical characters are allowed, with no space(s).

<CORPUSID> :== The id of the corpus used as the source of the audio data. For the Cantonese B data set, the value is
“babel101b-v0.4c”.

<PARTITION> :== conv-dev | conv-eval

<SCASE> :== BaDev | BaEval | BaSurp (See Scoring Cases below for descriptions)

<TASK> :== KWS | STT

<LP> :== FullLP | LimitedLP (See Section 3.1.1)

<LR> :== BaseLR | BabelLR | OtherLR (See Section 3.1.2)

<AUD> :== NTAR | TAR (See Section 3.1.3)

<SYSID> :== a site-specified string (that does not contain underscores) designating the system used. The SYSID string must be
present. It is to begin with p- for the one and only primary system (i.e., your single best system for a given set of <LP>, <LR>, and
<AUD>) or with c- for any contrastive systems. It is then followed by an identifier for the system (only alphanumerical characters
allowed, no spaces). For example, this string could be p-baseline or c-contrast. This field is intended to differentiate between runs
for the same evaluation condition. Therefore, a different SYSID should be used for runs where any changes were made to a system.

<VERSION> :== 1..n (with values greater than 1 indicating resubmitted runs of the same experiment/system)

Currently, the following EXPIDs are supported. If the element is of the form “<..>” any legal BNF value is accepted.

KWS13_<TEAM>_babel101b-v0.4c_conv-dev_BaDev_<TASK>_<LP>_<LR>_<AUD>_<SYSID>_<VERSION>

KWS13_<TEAM>_babel101b-v0.4c_conv-dev_BaEval_<TASK>_<LP>_<LR>_<AUD>_< SYSID>_<VERSION>13

B.1.1	 Scoring	 Server	 Cases	

The Indus scoring server supports a variety of reporting options based on if the references are available for researchers to use. The
submission routines and server will enforce compliance for compliance. The following describes the level of detail provided for each use
case.

BaDev - All the reports, DET curves, Threshold plots, and serialized DET Curves (usable with DETUtil to re-plot curves) will be
returned when scored.

BaEval - Reports will be delayed until NIST checks results from the evaluation. When NIST releases the scores, references will
remain hidden. The specific contents are TBD.

BaSurp - Reports will be delayed until NIST checks results from the evaluation. When NIST releases scores, a select set of reports
will be returned. The specific contents are TBD.

B.2	 System	 Output	 Formatting	 and	 Naming	

13 Note: BaEval will not be available until the Dry Run starts.

OpenKWS13-evalplan-v4.docx OpenKWS13 Evaluation Plan
 April 11, 2013

10

System output files must be named with a valid EXPID and file extension. KWS	 system	 output	 must	 be	 formatted	 as	 KWSList files as
described in Appendix A and use the extension ‘kwslist.xml’. STT system output files must be formatted as CTM files as described in
Appendix D and use the extension ‘ctm’. 	

B.3	 System	 Descriptions	

Documenting	 each	 system	 is	 vital	 to	 interpreting	 evaluation	 results.	 	 As	 such,	 each	 submitted	 system,	 (determined	 by	 unique	
experiment	 identifiers),	 must	 be	 accompanied	 by	 a	 system	 description	 with	 the	 following	 information.	

	

B.4	 System	 Output	 Submission	 and	 Scoring.	

Section	 1	 Experiment	 Identifier(s)	

List	 all	 the	 EXPIDs	 for	 which	 system	 outputs	 were	 submitted.	 EXPIDs	 are	 described	 in	 further	
detail	 above.	 	 	

Section	 2	 System	 Description	

Provide	 a	 brief	 technical	 description	 of	 your	 system;	 if	 a	 contrastive	 test,	 contrast	 with	 the	
primary	 system	 description.	 	 Please	 include	 contact	 information	 (name	 and	 email)	 for	 the	
submission.	

Section	 3	 	 Indexing	 Hardware	 Description	 and	 Runtime	 Computation	

Describe	 the	 hardware	 setup(s)	 (an	 aggregatation	 of	 computation	 components	 used	 to	
perform	 a	 processing	 step)	 and	 report	 the	 Total	 Processing	 Time	 (TPT)	 for	 each	 phase.	 	 The	
evaluation	 defines	 two	 phases:	 decoding/indexing	 and	 search.	 	 Each	 phase	 will	 be	 cdumented	
in	 a	 separate	 sub	 section:	

• Section	 3.1	 Decoding	 and	 Indexing:	 processing	 the	 test	 audio	 and	 building	 the	 data	
structures	 to	 prepare	 for	 keyword	 searches.	

• Section	 3.2	 Search:	 the	 process	 of	 finding	 and	 reporting	 keyword	 hits	 in	 the	 test	
corpus.	

Each	 phase	 may	 be	 broken	 down	 into	 sub-‐steps	 in	 which	 case	 the	 hardware	 and	 processing	
time	 of	 each	 sub-‐step	 must	 be	 documented	 as	 a	 textual	 description.	 The	 following	 is	 an	
example:	

Section	 3.1	 Decoding	 and	 Indexing:	 	

Two	 compute	 clusters	 were	 used:	 Castor	 and	 Polydeuces	

• Castor:	 NVIDIA	 Quadro	 6000	 GPU,	 448	 CUDA	 cores,	 6GB	 shared	
memory	 	

• Polydueces:	 a	 16-‐node,	 Dual	 Quad	 Core	 2.26	 GHz	 Intel	 Xeon,	 24GB	
RAM	 per	 node,	 with	 a	 10TB	 Data	 Server.	 	

Decoding	 and	 indexing	 were	 broken	 down	 into	 3	 sub-‐phases	 distributed	 to	
the	 two	 clusters:	

-‐ Feature	 extraction	 -‐	 Caster	 –	 0.53	 hours	

-‐ Lattice	 generation	 –Polydueces	 –	 63.6	 hours	

-‐ Indexing	 –	 Polydueces	 (1	 node)	 –	 1.4	 hours	

Section	 4	 Training	 data	 and	 knowledge	 sources	

List	 the	 resources	 used	 for	 system	 training,	 development,	 and	 runtime	 knowledge	 sources	
beyond	 the	 provided	 Babel	 corpora.	

Section	 5	 References	

Provide	 a	 list	 of	 pertinent	 references.	

	

	

	

Figure 2: System Description Template

OpenKWS13-evalplan-v4.docx OpenKWS13 Evaluation Plan
 April 11, 2013

11

In order to make KWS or STT submission, you must have installed the NIST F4DE Package (including adding F4DE programs to your path)
and completed the installation of data transfer license keys. Contact NIST (Martial Michel, martial.michel@nist.gov) for help completing the
installation of these tools. The submission will be validated prior to upload to NIST.

• To make a KWS submission, execute the command:

% SubmissionHelper.sh –S <SYSTEM_DESCRIPTION>.txt <EXPID>.kwslist.xml

• To make an STT submission, execute the command:

% SubmissionHelper.sh –S <SYSTEM_DESCRIPTION>.txt <EXPID>.ctm

The file “KWSEval/BABEL/Participants/README” contains several tips to use the SubmissionHelper.

B.5	 Self-‐Validation	 Prior	 to	 Submission	 (optional)	

The F4DE validation tools can be used by the site prior to submission using the following commands.

• For KWS:

% KWS13-SubmissionChecker.sh -d KWS13-dbDir file.kwslist.xml

• For STT:

% KWS13-SubmissionChecker.sh -d KWS13-dbDir file.ctm

OpenKWS13-evalplan-v4.docx OpenKWS13 Evaluation Plan
 April 11, 2013

12

Appendix C: RTTM File Format Specification
Rich Transcription Time Marked (RTTM) files are space-separated text files that contain meta-data ‘Objects’ that annotate elements of the
recording. Each line represents the annotation of 1 instance of an object. The RTTM file format is a cross-evaluation file format. As such,
Object types can be used or not used depending on the particular evaluation.

There are ten fields per RTTM line. They are:

Table C.1 RTTM Field Names

Field 1 2 3 4 5 6 7 8 9 10
Type file Chnl tbeg tdur ortho stype name conf Slat

Fields 1 and 7: Object types (type) and object subtypes (stype): There are three general object categories represented in the Babel
language packs: they are STT objects, source (speaker) objects, and structural objects. Each of these general categories may be represented
by one or more types and subtypes, as shown in Table C.2.

Table C.2 RTTM object types and subtypes

Categories Type Subtype values (as text strings)
Structural SEGMENT eval, or <NA>

NOSCORE <NA>

NO_RT_METADATA <NA>

STT LEXEME lex, fp, frag, un-lex14, for-lex, alpha15, acronym, interjection, propernoun,
and other

NON-LEX Laugh, breath, lipsmack, cough, (translated from Babel’s <laugh>,
<breath>, <lipsmack>, and <cough> tags respectively), sneeze and other

NON-SPEECH noise (translated from Babel’s <sta> tag), music, and other (translated from
Babel’s, <click>, <ring>, <dtmf>, <prompt>, <overlap>, and <int> tags)

Source Info SPKR-INFO adult_male, adult_female, child, and unknown (if not available)

Field 2: File name (file): The waveform file base name (i.e., without path names or extensions).

Field 3: Channel ID (chnl): The waveform channel (e.g., “1” or “2”).

Field 4: Beginning time (tbeg): The beginning time of the object, in seconds, measured from the start time of the file.16 If there is no
beginning time, use tbeg = ”<NA>”.

Field 5: Duration (tdur): The duration of the object, in seconds16 If there is no duration, use tdur = “<NA>”.

Field 6: Orthography field (ortho): The orthographic rendering (spelling) of the object for STT object types. If there is no orthographic
representation, use ortho = “<NA>”.

Field 8: Speaker Name field (name): The name of the speaker. name must uniquely specify the speaker within the scope of the file. If
name is not applicable or if no claim is being made as to the identity of the speaker, use name = “<NA>”.

Field 9: Confidence Score (conf): The confidence (probability) that the object information is correct. If conf is not available, use conf =
“<NA>”.

14 Un-lex tags lexemes whose identity is uncertain and is also used to tag words that are infected with or affected by laughter.
15 This subtype is an optional addition to the previous set of lexeme subtypes which is provided to supplement the interpretation of some
lexemes.
16 If tbeg and tdur are “fake” times that serve only to synchronize events in time and that do not represent actual times, then these times
should be tagged with a trailing asterisk (e.g., tbeg = 12.34* rather than 12.34).

OpenKWS13-evalplan-v4.docx OpenKWS13 Evaluation Plan
 April 11, 2013

13

Field 10: Signal Look Ahead Time (slat): The “Signal Look Ahead Time” is the time of the last signal sample (either an image frame or
audio sample) used in determining the values within the RTTM Object’s fields. If the algorithm does not compute this statistic, slat =
“<NA>”.

This format, when specialized for the various object types, results in the different field patterns shown in Table C.3.

Table C.3 Format specialization for specific object types

Field 1 2 3 4 5 6 7 8 9 10
Type File Chnl tbeg tdur Ortho stype Name Conf SLAT

SEGMENT File chnl tbeg tdur <NA> eval or
<NA>

name or
<NA>

conf or
<NA>

<NA>

NOSCORE File chnl tbeg tdur <NA> <NA> <NA> <NA> <NA>

NO_RT_METADATA File chnl tbeg tdur <NA> <NA> <NA> <NA> <NA>

LEXEME
NON-LEX

File chnl tbeg tdur ortho or
<NA>

stype Name conf or
<NA>

slat or
<NA>

NON-SPEECH File chnl tbeg tdur <NA> stype <NA> conf or
<NA>

slat or
<NA>

SPKR-INFO File Chnl <NA> <NA> <NA> stype Name conf or
<NA>

<NA>

OpenKWS13-evalplan-v4.docx OpenKWS13 Evaluation Plan
 April 11, 2013

14

Appendix D: CTM File Format Specification
Conversation Time Marked (CTM) files are space-separated text files that tokens output by the Speeeh-To-Text system. Each line
represents a single token.

There are ten fields per RTTM line. They are:

Table C.1 RTTM Field Names

Field 1 2 3 4 5 6
File Chan Tbeg Tdur Ortho conf

Field 1: File name (file): The waveform file base name (i.e., without path names or extensions).

Field 2: Channel ID (chnl): The waveform channel (e.g., “1”).

Field 3: Beginning time (tbeg): The beginning time of the object, in seconds, measured from the start time of the file.

Field 4: Duration (tdur): The duration of the object, in seconds.

Field 5: Orthography field (ortho): The orthographic rendering (spelling) of the token.

Field 6: Confidence Score (conf): The confidence (probability with a range [0:1]) that the token is correct. If conf is not available, omit the
column.

