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Larger systems…. proteins 

• Fundamental differences 
to small molecule 
crystallography: 

– Well known geometric 
constraints  
(polypeptide chains) 

– only φ, ψ and 
sidechain 
conformations which 
are unknown 
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Structure representations 
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Low resolution structures… 

• Much of crystal is 
liquid water 

• Use heavy atom 
method to “solve” 
phase problem 
 

• What do we see in 
electron density maps? 
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Wright, Protein Powders 

Many grains make a powder 
• 1 
• 2 
• 3 
• 5 
• 10 
• 20 
• 50 

 
• Spots cover spheres in 3D reciprocal 

space 
 

• 2D area detector takes a slice  
•  (on Ewald sphere) 
• 1D powder scan measures distance 

from origin 
• Proteins like that give amazing 

powder data 
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Myoglobin at 247 K

Neglecting protein: 

 Hexagonal Ice  (83 
wt %) 

(NH4)2SO4  (17 wt %) 

More demanding on the instrument! 
• “Conventional” pattern together with protein  

Small proteins versus Large proteins 
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New polymorph of 
insulin identified 
from powder data 

Acta Cryst D68, 1632, 2012 



a = 114.85 Å 
b = 334.89 Å 
c = 49.36 Å 
β = 103.36º } v = 1.85 million Å3  

pH 5.18 + resorcinol  

A. Fitch 



Very large unit cells 

• 3D lattice  
• 1D powder pattern 
• Peak density h*h 
• Best case 1000 
peaks... 

• ...cell parameter / 10 
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Refinements on relatively small proteins… 
• 1FUB 22.8, T3R3 insulin 
• 2O2W 25.3, ponsin 
• 1FU2 28.52, T3R3’ 

13 

1VSZ, 
human  

adenovirus 
106 a.a. 

• 2A6U 30.94, tetragonal lysozyme 
• 1XFT 31.41, turkey lysozyme 
• 1F6H 31.97, myoglobin 

³√ (V/Nsg) 
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Ribosome 



• polymorphism in 
protein drug crystals 
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Urate Oxidase 
 

Acta Cryst. (2010). D66, 539-548    [ doi:10.1107/S0907444910005354 ] 
Polymorphism of microcrystalline urate oxidase from Aspergillus flavus 
I. Collings, Y. Watier, M. Giffard, S. Dagogo, R. Kahn, F. Bonneté, J. P. Wright, A. N. Fitch and I. Margiolaki 
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5.55 5.7 7.4 7 6.2 6.08 

4.41 4.59 4.8 4.95 5.11 5.3 

6.14 6.26 6.28 6.3 6.39 6.5 

3.30 3.56 3.7 3.86 4.06 4.21 

1 mm 

Lysozyme crystallised at RT, vary pH 

S. Basso et al., Acta Cryst. D61, 1612-1625 (2005) 
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Accuracy of unit cell parameters? 
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S. Basso et al.,  
Acta Cryst. D61,  

1612-1625 (2005) 

• Upper panel: RT 
• Lower panel: 4°C 
• Orthorhomic – tetragonal 

phase transition 
• Variation of unit cell 

exploited for refinement 
 

• Controlled: 
• pH 
• Temperature  
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Untangling overlapped peaks 
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Symmetry overlaps 

An effective completeness for combined data 
sets is proposed as the fraction of  "peaks" 
having I/σ(I) greater than some threshold. 
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 Acta Cryst. (2005). D61, 1612-1625     
S. Basso, A. N. Fitch, G. C. Fox, I. Margiolaki and J. P. Wright 
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Radiation Damage… 

• Depends on absorbed 
dose 
 

• Large body of literature 
for single crystals 
 

• Peaks shift, disappear 
 

• About 80X worse at 
RT than cryo 
 
 
 

21 
(Ponsin, ID31) 

Wright, Protein Powders 



Author - Title (Footer) 22 

Effect of radiation damage at Room temperature 
0-60sec 

1-2 min 

2-3 min 

3-4 min 
4-5 min 

5-6 min 

6-7 min 
7-8 min 

8-9 min 
9-10 min 

Courtesy: Yves Watier 

10 mm 
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Slow kinetics – no radiation damage 
• Myoglobin Phase I>II kinetics at 263 K (fast cool followed by hold 

at constant temperature) 
• ESRF bending magnet, BM16 
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Merging scans with radiation damage? 

• Anisotropic peak shifts 
with radiation damage 
 

• Position on capillary 
 

• Classification using 
pycluster (cluster.py script) 
 

• Sum up similar scans 
(typically chi2 statistic, CC 
also useful) 
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    (Y1 – Y2)     
sqrt(e1

2  + e2
2) 

 
Sum of : 

Difference/error 



Structure solution of SH3.2, ponsin 

I. Margiolaki, J. P. Wright, M. Wilmanns, A. N. Fitch and 
N. Pinotsis, J. Am. Chem. Soc., 129 (38), 11865 -11871, 2007 
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Molecular replacement 

 --- Summary --- 
 
 S_ RF TF       theta    phi     chi    tx     ty     tz    TFcnt  Rfac   Scor 
 
 S___1__1   1   58.07  144.99  102.00  0.161  0.266  0.181   3.47  0.527  0.377 
 S___6_15   2  145.90  144.44   92.50  0.361  0.166  0.366   5.14  0.595  0.238 
 S___2_10   3  125.77  -81.54   96.49  0.212  0.061  0.165   2.29  0.627  0.192 
 S___4__7   4   51.52   58.03  125.28  0.456  0.267  0.351   3.25  0.612  0.191 
 S___7__5   5  132.09 -179.53   72.05  0.167  0.366  0.214   1.40  0.621  0.184 
 S___8_10   6  175.99 -179.51   84.91  0.406  0.101  0.391   2.09  0.615  0.178 
 S__10_13   7   71.94 -151.69   19.36  0.378  0.216  0.318   1.78  0.625  0.177 
 S___5__5   8   62.17 -139.62  106.19  0.279  0.485  0.198   2.21  0.624  0.171 
 S___9_11   9   80.99 -179.11   79.75  0.284  0.452  0.132   1.62  0.616  0.165 
 S___3_13  10   30.37   76.91  178.57  0.346  0.253  0.137   2.17  0.627  0.146 

Two models were tested  
Solution always obvious 
 
MOLREP searches orientation  
and position of the model in 
the unit cell 

Solution Score for two different models 

Molrep results: 
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Initial electron density maps 

2Fo-1Fc (blue at 1σ) and 1Fo-Fc (red at -2.5σ and green at 2.5σ) electron density maps, as determined directly after the 
molecular replacement. The residues represented in grey stick carbon atoms correspond to the molecular replacement 

model used for the calculation of the maps, while the residues in green color carbon atom sticks represent the final refined 
model.  

Initial model from pdb Final model after rebuilding and refinement 
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λ= 0.8012034(76) Å, exposure time: 2 min. 

Sample A:  
a=24.70420(9) Å 

b= 36.42638(14) Å 

c= 72.09804(26) Å 

λ= 1.252481(32) Å, exposure time: 2 min. λ= 1.252481(32) Å, exposure time: 4 min. 

Sample B:  
a= 24.79017(7) Å 

b= 36.35407(12) Å 
c= 72.22940(32) Å 

 

λ= 1.251209(40) Å, exposure time: 2 min. 

4 dataset restrained refinement, ponsin 
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Completeness & correlations to SX 

Quality of extracted intensities 

Combined fit 

Single patterns 

Very similar to  
completeness 

3Å 3Å 
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Completeness from eigenvalues of matrix of I/sigma, eg, Pawley weight matrix 
multiplied by intensities. 



Selected regions of the final refined structural model in stick representation  
and the corresponding total omit map contoured at 1σ.  

544 protein atoms and 36 water molecules were identified  
in total OMIT and difference electron density maps. 

The Second SH3 domain of Ponsin 

30 Wright, Protein Powders 



Powder-diffraction structure of the ponsin SH3.2 domain. (A) Ribbon representation of the SH3.2 
indicating the secondary structure elements of the domain. The main hydrophobic residues of the 
binding interface as well as the positions of the n-Src and RT loops are indicated. (B) Electrostatic 
potential representation of domain identifying additionally the water molecules as red spheres.  

SH3.2: The final model 
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Structure Validation 

ERRAT: 
http://nihserver.mbi.ucla.edu/ERRATv2/ 

 +----------<<<  P  R  O  C  H  E  C  K     S  U  M  M  A  R  Y  >>>----------+ 

 | final2   2.8                                                   67 residues | 

 | Ramachandran plot:   98.2% core    1.8% allow     .0% gener     .0% disall | 

 | Gly & Pro Ramach:     0 labelled residues (out of  10)                     | 

 | Chi1-chi2 plots:      0 labelled residues (out of  43)                     | 

 | Main-chain params:    6 better     0 inside      0 worse                   | 

 | Side-chain params:    5 better     0 inside      0 worse                   | 

 | Residue properties: Max.deviation:     2.7              Bad contacts:    0 | 

+|                     Bond len/angle:    4.8    Morris et al class:  1  1  3 | 

 | G-factors           Dihedrals:   -.24  Covalent:   -.17    Overall:   -.18 | 

 | M/c bond lengths:100.0% within limits    .0% highlighted                   | 

 | M/c bond angles:  80.1% within limits  19.9% highlighted                   | 

+| Planar groups:    95.5% within limits   4.5% highlighted                   | 

 +----------------------------------------------------------------------------+ 

   + May be worth investigating further.  * Worth investigating further. 

PROCHECK: 
http://www.biochem.ucl.ac.uk/~roman/procheck/procheck.htm

l 
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Comparison with the single crystal model 

I. Margiolaki, J. P. Wright, M. Wilmanns, A. N. Fitch & N. Pinotsis.  
JACS 129 (38): 11865-11871 SEP 26 2007 
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Solvent scattering 
• Fits with and without 

solvent contribution 
• “Babinet’s principle” 

gives modified atomic 
scattering factors: 
 
 

• Here A=6.63e- and 
U=1.18Å2 (so carbon 
effectively has no 
electrons at low angles!) 
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GSAS : Refinement software 
• Automatically generates restraints for 
amino acids and protein chain  

• Band matrix (speed) + Marquardt damping 
(stability) 

• Reads & writes PDB files and electron 
density maps 

R. B. Von Dreele, “Combined Rietveld and stereochemical restraint 
refinement of a protein crystal structure.” J. Appl. Cryst. 32, 1084-1089 
(1999). 

R. B. Von Dreele, “Binding of N-acetylglucosamine to chicken egg 
lysozyme: a powder diffraction study.” Acta Cryst. D57, 1836-1842 
(2001). 
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Restraints / Constraints in GSAS 

• All chemical information 
can be introduced with 
restraints (planes, chiral 
volumes, torsions) 
 

• Bond distances and 
angles now via flexible 
rigid bodies. 
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Acta D, in press 



Integrated Intensities from powders (22/06/07) 

Free R factors 

• “One of the best things to come out of protein 
crystallography” 
 

• Exclude some reflections from refinement 
 

• Compare calculated values to observed 
 

• If a model is fitting noise, the calculated values 
for these excluded peaks is likely to get worse. 
 

• For overlapped data: 
• Excluded reflections are free variables 
• “observed” values are those which best fit 

the data 
• Compare as before 

 
 

Rfree + powder refinements with weight matrices – Wright, Z. Krist ’04 
Used python + cctbx (R. Grosse Kunstleve tomorrow) 



Space group absences overlapped? 

• 21 absences are 
overlapped in powder 
diagram 

• Since 2-fold is the long 
337 Å axis 

• Systematic problem as 
next axis is 1/3 length  
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Newer sample with crystallites… 
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• Cake image (radial 
transform) 

• Ewald sphere is 
roughly flat 

• We never see spots 
for the k=odd 
positions 

• Assume the 
symmetry is P21. 
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Finding orientation matrices for 
multiple single crystals 
 
EU project 
“TotalCrystallography” 
 
Large software investment 
 
http://fable.sourceforge.net 
 



5 Crystals of lysozyme, ID14 data 

• index_unknown.py 
• FFT based method 
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Fundamental size limit (protein) 

● Comes from radiation 
dose tolerance for a 
single crystal 

● 20 micron crystal 
required for 100 
Angstrom protein unit 
cell 

● Smaller crystals? 
– powder methods 
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• Nature 470,  
• 73–77 (2011)  
 

• Submicron crystal 
shapes from 
coherent 
diffraction 
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Summary 

• Control sample 
preparation to get 
reproducible data 
 

• Get the best data you 
can 

• High resolution 
• Multi-dataset 

• Structures can be 
“solved” if approximate 
molecule is available 
 

• Refinements of small 
proteins are possible 
 

• Structural detail is 
~1/10 cell parameter  
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Thank you  
for listening 
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