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Abstract: For several years we have been studying the use of Fabry-Perot interferometers for 
precise measurement of the refractive index of gasses, where the primary motivation has been to 
improve interferometer-based length measurement.  Because the refractive index of a gas 
depends on its pressure and temperature, we can also use refractive index to monitor either of 
these quantities if the second is known.  Recently we have embarked on a project that will utilize 
refractive index to infer pressure with a smaller measurement uncertainty than is currently 

possible, hoping to reach a relative standard uncertainty of 1.410-6. The projected uncertainty 
budget is currently dominated by uncertainty of the Boltzmann constant, but following the 
coming redefinition of SI units, the Boltzmann uncertainty will be replaced by uncertainty in the 
temperature scale, at which point refractive index measurements can be expected to play a 
central role in precise realization of thermodynamic temperature.   

Dimensional metrology with picometer uncertainties is the core of our technique and is the 
subject of this paper.  Refractive index will be measured by comparing two precisely equal 

displacements ( 150 mm), where one displacement is in vacuum and the second is in helium 
and will appear to be slightly longer due to the refractive index.  The two displacements must be 
compared with < 3 pm uncertainty.  The intrinsic precision achievable with Fabry-Perot cavities 
far exceeds our needed accuracy, but two or more independent interferometers have never been 
compared to such high accuracy when undergoing macroscopic displacements.   The major 
challenges include many of the typical sources of error in dimensional measurement, such as 
Abbe errors, alignment errors, material dimensional stability, etc.  Careful consideration must be 
given to second-order effects that are not normally large enough to merit mention. Our proposed 
experimental design will minimize such errors and provide additional metrology (including angle 
measurements with nanoradian precision) needed to correct the residual errors.   

Learning Objectives:  Understanding sources of uncertainty in ultra-high accuracy dimensional 
measurements. 

1. Introduction. We are beginning a project to improve measurement of refractive index of 
gasses.  One motivation is to improve our capability for interferometer-based length 
measurements in air or other gas environments.  A second motivation arises from the fact that 
refractive index is related to gas density, and consequently this technique can also be used as an 
indirect measure of either gas pressure or gas temperature if the second quantity is 
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known/measured. We plan to use this approach as the basis of new pressure and temperature 
standards.   For temperature measurement, the technique is an optical analog of existing methods 
of gas thermometry based on dielectric constant measurements.  For pressure measurements 
(which is our current focus), the technique holds promise of providing lower uncertainties than 
presently attainable while eliminating the need for the current mercury-based standards.    

The dimensional metrology required to achieve this goal is quite demanding.  We need to 
compare the changes in two optical path lengths, one in vacuum and the other in gas, with an 
accuracy of a few picometers on an overall displacement of ≈15 cm.  This article discusses only 
the dimensional metrology. There are a number of other critical issues involved in inferring 
pressure (or temperature) from the measurements, but these are beyond the scope of this article.    

2. Fixed length Fabry-Perot cavities. For several years we have been using optical cavities to 
measure refractive index of gasses [1].  Thus far, we 
have been doing these measurements with Fabry-
Perot cavities of fixed length such as shown in 
Fig. 1. (Variable length cavities will be discussed in 
the following sections.) Highly reflective mirrors 
made from low-expansion glass are mounted facing 
each other, bonded to the ends of a spacer of the 
same material.  Gas fills the region between the 
mirrors (the slot in the spacer). A laser passes 
through the cavity to measure its optical length, nL, 
where L is the physical length and n is the gas 
refractive index.  The intensity transmitted through 
the cavity is large when the laser wavelength is in 
resonance with the cavity, which occurs when the 
round-trip distance travelled by the light (2L) is an integer number (m) of wavelengths in the gas:   

 2L=mλgas  (1) 

where the wavelength in gas (λgas) is related to wavelength in vacuum (λvac) according to  

 λgas= λvac/n .     (2) 

 (Equation (1) ignores several small but important effects such as mirror phase shifts and Gouy 
phase shifts [1].) The laser frequency (or equivalently, vacuum wavelength λvac) is servo-
controlled to keep the laser in resonance with the cavity.   If the physical length of the cavity is 
fixed, then a change in refractive index would tend to change λgas, but the servo system will re-
adjust the laser frequency (thus changing λvac ) so as to keep λgas constant and maintain 
resonance.  The frequency change can then be measured to determine the change in refractive 
index.  In principle, we could track this change as we go from vacuum (with known index n=1) 
to ambient pressure, and this would allow us to determine the refractive index.  Equivalently, we 

Figure 1. A Fabry‐Perot cavity. 
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can think of this as measuring the change in the optical length of the cavity when gas is admitted:  

if the length is L at vacuum, nL when gas is added, and if we assume that L=L, the difference in 
optical length, (n-1)L, provides a measure of the gas refractivity (n-1).  The refractivity is in first 
approximation proportional to gas density or, equivalently, P/T, and thus can provide an indirect 
measure of pressure or temperature.  (The proportionality is not exact: non-linearities such as 
non-ideal gas behavior must also be taken into account.)    

A pressure measurement system now under construction contains two cavities within one block 
of glass, where one of the cavities is a vacuum reference and the second, similar to Fig. 1, is 
open to its surroundings. We will measure the frequency difference (beat frequency) between a 
laser locked to the vacuum reference and a second laser locked to the open cavity.  A change in 
the beat frequency provides a measure of the change in gas refractive index, which can be 
interpreted as a change in 
the gas pressure in the 
open cavity.    For low 
pressures, the expected 
noise floor might be 
estimated from 
measurements we have 
carried out comparing the 
cavity of Fig. 1 to a 
separate cavity, both under 
vacuum. Some results are 
shown Fig. 2.  With 10-s 
averages of the beat 
frequency, short-term 
noise is much smaller than 
long-term drift; the useful 
precision is determined by the rate of drift and by how long is required to do a measurement after 
“zeroing” the device at vacuum. Typical drift rates shown in Fig. 2 are about 1 kHz/h; if the time 
for a measurement is under 1 hour, the useful resolution is then about 1 kHz.  The amount of 
time that is required to perform a measurement depends on the time required to re-establish 
thermal equilibrium after adding gas, and can be quite long unless careful consideration is given 
to thermal management. Even at 1 h, the expected 1 kHz frequency variations correspond to a 
change in optical length of only 0.3 pm, demonstrating the high level of precision achievable. In 
terms of pressure measurement, the 0.3 pm change would correspond to a nitrogen pressure 
change of about 1 mPa.  We would expect that our new device, where the two cavities share the 
same block of glass and have higher finesse, should substantially reduce noise and drift and 
should correspondingly improve the low-pressure resolution limit.   

Figure 2. Drift in the frequency difference between two cavities.  Uncertainties in the 
actual frequency measurement are too small to be visible on the graph. 
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This example illustrates how fixed-length cavities provide a relatively straightforward path to 
sub-picometer precision. For measurements below 100 Pa, this precision is the limiting factor on 
accuracy, but at higher pressures systematic effects come into play.  The analysis above assumed 
that the physical cavity length remained constant as the gas pressure changed, but this is not 
quite true due to the bulk modulus of the material. Corrections can be made to account for bulk 
modulus but the correction procedure is not sufficiently accurate to reach our goals.   

A second, more complicated approach is needed to overcome this problem, employing a variable 
length optical cavity (VLOC).   A pressure measurement system based on fixed length optical 
cavities (FLOC) has a good promise as a transportable standard, but can only reach its full 
potential after developing a second standard as described in the next section.         

3. A Variable Length Cavity (VLOC) filled with helium.   As explained previously, with a 
fixed length cavity we would like to measure the difference between the cavity length L in 
vacuum and the apparent length (optical length) given by nL when gas is present, and thus 
determine refractivity (n-1).  The difficulty of this approach lies in the fact that the physical 
length L is not constant as pressure changes. This problem might be circumvented by working at 
constant pressure and generating two identical displacements L in variable-length Fabry-Perot 
cavities, one in gas and one in vacuum. The apparent displacement in the gas interferometer will 
be nL, and the difference between the two displacement measurements, (n-1)L, measures 
refractivity (n-1) and thus determines P/T.  To achieve relative uncertainties of 1 part in 106 or 
better, it will be necessary to measure (n-1)L to this accuracy.  A gas of particular interest is 
helium, because the refractive index as a function of P and T can be calculated from first 
principles with high accuracy, so the refractive index measurement can be used to determine P 

absolutely (if T is known).  For helium at atmospheric pressure, n-1 is 310-5, and the difference 
in lengths (n-1)L is 4.5 μm.  As this must be measured to better than 1 part in 106, it will be 
necessary to measure the difference in displacements to better than 4.5 pm. (It is also necessary 
to measure L to better than 1 part in 106, but this is not at all difficult.)  

Our initial goal is to do the measurement with 3 pm standard uncertainty. (All uncertainty 
estimates in this paper are to be interpreted as standard uncertainty, coverage factor k=1.)  It has 
already been mentioned that it is not too difficult to achieve sub-picometer precision when 
comparing two optical cavities.  The effective length of an optical cavity can be measured with 
almost unlimited precision (even accuracy). The difficulty lies in relating the ultra-high accuracy 
of the internal cavity metrology to the actual measurand of interest.  In the context of the VLOC, 
the problem is one of generating and measuring absolutely identical displacements in two optical 
cavities.      

  One scheme for achieving this goal is shown very schematically in the Fig. 3. As depicted, this 
scheme employs four Fabry-Perot interferometers, three in vacuum and one in gas.   In principle 
the measurement requires only one of the vacuum interferometers, but at least one additional 
interferometer is needed to avoid a large Abbe offset, and the final interferometer completes a 
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system for monitoring angular variations (with nanoradian precision) when the moving mirror 
assembly is displaced. A sliding seal or bellows (not shown) allows for one baseplate to move, 
changing the 
length of the 
helium path 
(center) and 
vacuum paths (on 
the outside).   

 All of the moving 
mirrors must be 
rigidly mounted to 
the common 
baseplate so that 
their relative 
position in space 
remains stable at 
the picometer level 
during a 
displacement.  
This can be achieved if the mirror substrates are made from ultra- low expansion glass (or 
ceramic) and the mirrors are rigidly attached to a plate of the same material by optical contact or 
similar stable bonding methods.        

4. Comparing displacements at the picometer level. How can we achieve picometer accuracy 
in the measurement?  The issues that need to be addressed include some familiar topics for those 
who do precision measurements -- Abbe offset, stage motion errors (pitch, yaw, straightness, 
etc.), interferometer misalignment, uncertainty of the basic length metric (laser vacuum 
wavelength), deadpath errors, geometric stability of the system, and imperfect surface form of 
the interferometer mirrors in combination with beam spread and beam walk. (“Beam walk” 
includes a variety of effects causing the beam to move across the surface of the mirrors as the 
moving baseplate is displaced).  Another potential error source familiar when doing  high 
precision interferometry-- fringe interpolation errors in a Michelson interferometer--  is here 
replaced by an analogous error of finding the center frequency of the Fabry-Perot resonance. 

4.1 Abbe Error: Abbe offset, pitch, and yaw.   One of the most important sources of error in 
any measurement is Abbe error, and the requirements for picometer measurements are extreme.  

Abbe error is  d where d is the Abbe offset and   is a small angular variation due to pitch and 
yaw of the stage that moves the baseplate. (Small-angle approximations will be used throughout 
this paper.)  For the apparatus shown in Fig. 3, the Abbe offset would be zero if the central 
interferometer mode is accurately located at the geometric center of the outer three 
interferometer modes.  For illustration, a picture of a simplified planar system with just 3 

Figure 3.  Conceptual picture of a variable‐length cavity scheme, showing a laser locked to one of 
the four Fabry‐Perot cavities.  
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interferometers (and no tube around the central interferometer) is show in Figs. 4a and 4b. Figure 
4a shows the initial position of the mirrors and Abbe offset d.  In Fig. 4b, the baseplate with the 
curved mirrors has been moved to the left, accompanied by a pitch error θ.  The difference 
between the average displacement of the two outer interferometers and the displacement of the 
central interferometer is then θd.    

If the fixed base plate has flat mirrors that are 
accurately parallel, and the moving base plate has 
concave mirrors, the position of the modes is 
determined by the placement of the concave 
mirrors—more precisely, by the location of the 
centers of curvature of the mirrors.  We should be 
able to determine the relative locations of the centers 
of curvature with the help of a high-accuracy 
coordinate measuring machine.   If all mirrors but one 
are bonded to the baseplate, the proper location of the 
final mirror to minimize Abbe offset can be 
determined.  Using a jig to set this location, it should 
be possible to bond the final mirror very near to the 
proper position.  A realistic goal that can be achieved 
with good confidence is to demand that the Abbe 
offset d be kept below 0.1 mm.   

 In order to achieve our uncertainty goals, we hope to 
keep Abbe error at 1 pm or below.  With an Abbe 
offset that could be as large as 0.1 mm, this will require 

that pitch and yaw errors are less than 0.01 rad (0.002 
arcsec).  Such tiny angular errors will require the use of a 
fine tip/tilt control stage to correct errors in the coarse 
motion stage. (Rather than using fine adjustment to keep 
motion errors below 0.01 μrad, it would suffice to 
numerically correct for Abbe error if the Abbe offset and 
angular errors can be measured with suitable accuracy, 
but it would be difficult to do this with sufficient 
accuracy to entirely circumvent the need for fine 
adjustment. Without fine adjustment, Abbe errors would 
also be accompanied by errors associated with beam walk, as described later.) One might think 
that angle measurements requiring 0.01 μrad uncertainty are rather demanding, but in the context 
of the VLOC this is not so. This angle corresponds to an imbalance in the outer three 
interferometers of 1 nm, which should be trivial compared to the picometer accuracy required in 
our displacement measurements. It also helps that the measurement is performed in vacuum and 

Figure 4. Two types of errors in a simplified 
system (three interferometers in a plane).  
The interferometer modes are shown as 
double-headed arrows.  (a) The center line 
of the outer two interferometers, shown as 
dash-dot line, has Abbe offset d relative to 
the mode of central interferometer.  (b) 
Cavity length is increased by moving the left 
baseplate, accompanied by pitch error θ. (c) 
(For Sec. 4.6.) Central mode is misaligned 
by angle θ relative to the outer modes (both 
before and after displacement); 
displacement is accompanied by 
straightness error w which causes the modes
to move from position of dashed arrows to 
position of solid arrows.  
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that only a very small measurement range is required, as the angle will always be kept near zero 
by the fine adjustment stage.   

4.2 Alignment error:  If the four flat mirrors were simply four coated areas on a perfectly flat 
plate, the interferometer axes would be perfectly parallel.  However, no plate is perfectly flat, 
and we cannot add individual angular adjustment to the four mirrors without compromising 

stability. We will require that the mirrors be parallel to within 1 rad (0.2 arcsec)—a difficult but 
achievable specification.  

4.3 Classic Cosine Error:  There are several forms of alignment errors, referred to as “cosine 
errors” that can be associated with a measurement.  The one that is most directly relevant here is 
a misalignment between the inner and outer interferometers, causing them to measure distances 

differing by (1/2)2L where, for the VLOC, L is the displacement and  is the 1 rad 

misalignment discussed above.  This error is negligible for the VLOC.   

4.4 Generalized Straightness error:   For some purposes, it may be convenient to group three 
types of stage motion errors together as a “generalized straightness error.”  Normal straightness 
errors, misalignment of the motion direction with the axis of the interferometer, and stage roll 
errors all have the effect of creating a translation of the moving mirrors perpendicular to the 
interferometer axis. For example, a misalignment of the motion axis with the axis of an 
interferometer by a small angle θ will cause the mirrors to translate perpendicular to the direction 
of motion by Lθ, where L is the displacement.  This is equivalent in effect to a straightness error 
Lθ.  Similarly, when the outside mirrors are located at radius r from the center of the plate, a roll 
about the center with magnitude θR causes the mirrors to translate by r θR.  Although this is not 
equivalent to a normal straightness error in the sense that the directions of the translations are 
different for each mirror, the effect is again to translate the mirrors perpendicular to the 

interferometer axis.   For r=2 cm and θR =20 rad, the error would be 0.4 m, small enough that 
it would not be necessary to correct it.  It would be desirable to have a stage with less than 
20 μrad of roll, so that this goal can be reached without requiring additional fine adjustment of 
roll. Other generalized straightness errors can then be corrected by two fine translation stages.  

4.5 Beam Walk: “Beam walk” is motion of the beam across the surface of the mirrors.  It is a 
function of pitch, yaw, roll, straightness, and alignment with the motion direction.  In reality, 
beam walk due to pitch and yaw errors become irrelevant once pitch and yaw are reduced to a 
suitable level so as to avoid Abbe errors; under these conditions, it depends only on the 
generalized straightness.   

The position of the interferometer modes is fixed by the position of the concave mirrors.  If the 
concave mirrors are on the moving element, the mode positions follow the mirror motion and are 
displaced according to the generalized straightness error.  One way to measure the generalized 
straightness error is to observe the beam walk with a quadrant detector.  It should be possible to 
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use this technique to measure the generalized straightness error and correct it, using fine motion 
stages, so that any residual beam walk is less than 1 μm.  

As mentioned above, as a practical matter pitch and yaw errors do not cause significant beam 
walk because they must be corrected to such high accuracy for purposes of eliminating Abbe 
error.  But for completeness it is worth noting that in the presence of a pitch or yaw error, the 

beam would walk by an amount R where   is a pitch or yaw error and R is the mirror radius of 
curvature (about 0.5 m). This differs from the generalized straightness errors in that the beam 

position does not remain fixed relative to the concave mirrors; rather, it translates by R  relative 
to the surface of both the concave and flat mirrors.  The additional error due to motion of the 
beam across the surface of the concave mirrors is expected to be small.  

 4.6 Length errors associated with beam walk:  As the interferometer beams walk, they move 
across the surface of the flat mirrors. The primary error that results from this motion is a 
combination of beam walk with the relative alignment error discussed previously.  One way to 
think about the problem is to imagine what happens if the flat mirror (and mode axis) of the 

central interferometer is tilted by   relative to the angle of the exterior interferometers, and that 
a straightness error causes the beams of all the interferometers to be displaced in a direction 
perpendicular to the axes of the outer interferometers.  (See Fig. 4c.)  Under these circumstances 
there is no change in the readings of the outer interferometers, but the displacement w has a small 
component along the direction of the axis of the central interferometer, causing its reading to 
change by wθ. With our previous assumptions that w ≤ 1 μm and θ ≤ 1 μrad, the resulting error 
would be ≤ 1 pm. 

Note:  more precisely, θ is the difference between the slope of the inner interferometer flat mirror 
surface and the average slope of the outer interferometer mirror surfaces, where all slopes are 
measured along the direction of the beam walk. 

We will monitor the beam walk directly and use fine control to eliminate all these sources of 
beam walk except for roll.  Under these circumstances, the only unavoidable errors are set by (a) 

our ability to measure straightness and (b) a roll-induced straightness error of 0.4 m that we are 

not correcting.   We can probably measure straightness within 1 m without much difficulty. If 
necessary, the straightness measurement could be done much better at the expense of added 
complexity.      

After correction with a fine adjustment stage, “beam walk” will then not exceed 1 m, and the 
beam-walk/alignment error should not exceed 1 pm.  

4.7 Surface figure:  The form of the mirror surfaces affects the shape of the interferometer mode 
and changes fine details of how phase evolves as a function of distance.  In addition, the local 
slope of the flat mirror surface determines the overall direction of the mode and thus plays a role 
in determining the alignment error discussed previously.  Variations in local slope away from the 
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ideal might be considered to be the lowest-order effect of imperfect surface figure; variations on 
the order of 1 μrad can be expected even for the best surfaces available.  Here we discuss 
possible higher-order effects.  The next effect to consider is local curvature of both the concave 
and nominally flat surfaces, including the possibility that the curvature might differ along two 
axes, corresponding to astigmatism.  These effects give rise to Gouy phase shifts (diffraction 
effects).  Durand et al. [2] have shown that it is possible to measure the local 
curvature/astigmatism of the two surfaces and to make corrections for the Gouy shift at the sub-
picometer level.  

Beyond curvature, the imperfect mirror surfaces have topological features on a variety of length 
scales that may be hundreds of picometers high (even for a super-polished mirror).  At some 
level these features will perturb the mode structure and give rise to phase shifts analogous to the 
Gouy shift.  Perhaps more important might be the fact that, if the beam walks across the mirror 
surface, this could give rise to errors at the picometer level simply because the average surface 
height will change as the beam samples different positions on the imperfect surface.  The same 
kinds of errors can also occur because the mode diameter (beam diameter) changes as the 
distance between the two interferometer mirrors changes.   However, all of these higher-order 
effects appear to be likely irrelevant; the experiment [2] suggests that it suffices to make the 
Gouy corrections for astigmatic surfaces and additional corrections are required only at the sub-
picometer level. Based on those results, we estimate that possible errors are below 0.6 pm.  

In reality, our experiment could yield a correct value for the refractive index even if we ignored 
the Gouy phase shifts. First of all, the Gouy corrections mostly cancel if all the mirrors have 
nominally the same curvature.  Furthermore, the residual errors could be corrected by measuring 
and subtracting the apparent refractivity at zero pressure. (The curvature of the mirrors will not 
change noticeably due to pressure distortions.)   

4.8 Geometric Stability:  The geometry of the flat plates that hold the mirrors must remain fixed 
during the displacement, so as to guarantee that the average displacement of the outer 
interferometers is equal to the displacement of the inner interferometer at the picometer level.   

 To perform a displacement it is necessary to include a sliding seal or a bellows in the central 
pipe shown in Fig. 3.  Friction in the seal or extension/compression of the bellows will apply 
forces to the end plates. Finite element calculations suggest that it is not trivial to avoid the 
resulting distortions, but with careful design it should be possible to completely decouple these 
forces from the end plates.  

 A second problem is possible helium diffusion into the glass of the baseplate or mirror 
substrates.  With our existing cavities (Fig. 1), which use a titania silicate low expansion glass, 

we have observed that helium infusion causes the length to change fractionally by ΔL/L= 710-10 

per hour, and this rate of change was constant during 10 hours of observation.  For a 1 cm thick 
mirror substrate contacted to the end plate, the expected drift is then 6 pm/h, and the importance 
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of this drift depends critically on how much time will be required to do a measurement.  Over a 
period of 30 min, the drift is only 3 pm, and the effect can be mostly eliminated by measuring 
first at the initial position, followed by a 15 cm displacement to the final position and a return to 
the initial position for a final measurement.  Assuming the drift is linear in time, averaging the 
two readings at the initial position would effectively eliminate it.  

However, there is some danger that making displacements will disrupt the thermal environment, 
in which case it may require many hours to re-establish thermal equilibrium.  In that case, 
eliminating the drift assuming a linear time variation would become much more problematic.  
This problem might be entirely avoided (with some tradeoffs) by using a material for the 
baseplates and mirror substrates that is not permeable to helium.    

The geometry is not sensitive to uniform thermal expansion, but in principle could be affected by 
thermal gradients that are a function of position of the moving plate.  If the mirror substrate of 
the internal interferometer expanded relative to the external interferometers by 1 pm, this will 
cause a 1 pm error in our result. However, any such error should be much less than 1 pm for the 
VLOC, with gradients less than 0.2 mK, mirror substrates ≈1 cm thick, and the thermal 

expansion coefficient ≤ 310-8 /C.   A thermal gradient across the base plate could also cause it to 
bend, but the expected effect is again negligibly small.   

Material aging might also cause instability of the geometry.  A uniform change in dimensions 
would be balanced, but one might imagine that relieving of stresses could cause the plate to warp 
over time.  However, optical cavities such as our FLOC have generally demonstrated good long 
term stability.  Observed changes in length have been less than 3 pm/d, where the change 
includes both uniform aging of the bulk material plus any possible warping of the end plates 
(mirror substrates) and aging of the mirror coatings. The effects of warping could be somewhat 
worse for the VLOC with its relatively large base plate, but it seems unlikely that warping could 
exceed a few picometers over a run, and can be largely eliminated by averaging readings at the 
start and end of a run, as was discussed for helium absorption.  

4.9 Locking accuracy:  As discussed for the case of a fixed-length cavity, this is a sub-
picometer error.  The main problem to be aware of is unintended amplitude modulation of the 
laser beam, which can vary with time and shifts the apparent center frequency of the cavity 
transmission maximum.   

4.10 Length Metric:  The basic metric is the laser vacuum wavelength.  Errors in the metric 
would be precisely common mode except for the fact that the change in optical pathlength in the 
middle interferometer is larger than the displacement of the outer interferometer because of the 
refractive index of helium.  The difference is only about 5 μm.  If we know the laser wavelength 
to 1 part in 107, the resulting error is then 0.5 pm.  This is trivially achieved if a helium-neon 
laser is employed for the interferometer and its wavelength is measured by comparison to any 
commercial frequency-stabilized reference laser. 
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The requirements on laser frequency would be much more demanding if the comparison of the 
vacuum and gas paths was carried out using a back-to-back geometry. With differences in path 
length exceeding 0.1 m, picometer accuracy would require frequency metrology at the 10-11 
level, a significant complication.  

4.11 Deadpath:  As the gas density (primarily pressure) changes, the optical length changes. 
This has no real effect if the measurement begins at zero pathlength, but when it begins at non-
zero pathlength, the pressure change effectively represents a change in the initial position of the 
measurement, which will give an error unless it is measured and corrected.  A high-quality piston 
gage may suffice to keep the pressure constant during a run, but it is challenging: if the deadpath 

is 15 cm (equal to our displacement), then a fraction change in helium density of 510-7 will 
cause a shift in zero position of 2.7 pm. Once again, this effect can be largely eliminated if the 
pressure drift is linear in time and measurements at the initial position are averaged before and 
after the displacement. Also, it should be possible to measure and correct for pressure changes if 
the measuring device is suitably stable; one possibility is a FLOC as discussed previously. 

4.12 Summary of errors, repeatability of errors with multiple runs:   An important question 
is, what errors are systematically repeatable, which vary in a predictable manner vs time, and 
which are just noise?  Consider, for example, the largest potential errors that were discussed 
above.  If we simply do a single two-point displacement measurement, without a return to the 
initial position, errors could be as large as: 

(1)  Geometric instability will contribute at least 3 pm uncertainty due to helium infusion, more 
if the measurement requires long times to reach thermal equilibrium. 

 (2) Deadpath error could be as large as 2.7 pm if pressure is unstable at the level of 0.510-6 and 
the instability cannot be measured and corrected. 

 (3) Abbe errors are expected to be about 1 pm at any position, or 1.4 pm when measuring a two-
point displacement. 

(4) Beam walk combined with alignment errors will contribute about 1 pm uncertainty. 

 (5) A combination of beam spread and imperfect surface figure can contribute an estimated 0.6 
pm of uncertainty. 

 (6) Other errors are small in comparison and add very little to the total uncertainty.  

Adding these uncertainties in quadrature gives a projected combined standard uncertainty of 4.5 
pm, not quite as good as what we hope to achieve.  But all of these errors can be reduced in one 
manner or another.  If they are random in nature, they can simply be reduced by averaging 
multiple measurement runs. This would include Abbe errors, which will not repeat run-to-run 
because the angular errors are always re-adjusted to nominal zero. At the opposite extreme, if 
errors are totally repeatable including independent of pressure (such as beam spread), they can be 
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corrected on the basis of measurements at zero pressure. If they are neither totally repeatable nor 
random, but vary approximately linearly in time (geometry instability from helium infusion, 
deadpath error due to drift in a piston gage) they can be greatly reduced by returning to the 
original position and averaging (a drift-eliminating experimental design). Finally, “beam walk” 
errors will have a random component, which can be reduced by averaging, but may also have a 
systematic component due to systematic errors in straightness measurement.  The systematic part 
will repeat at zero pressure and can be eliminated in the same manner as the “beam spread” error.     

It can probably then be argued that most of the major sources of error will be reduced by at least 
a factor of 2 with averaging two pairs of out-and-back runs in a drift-eliminating design. This 

will bring us to our goal of   3 pm overall uncertainty.  

5. Conclusion.   Sub-picometer precision can be straightforward in a mechanically simple 
system such as our fixed length cavity (FLOC).  But achieving useful measurements relating to 
the external world at the picometer level is much more difficult, as evidenced by the VLOC 
where multiple lasers and fine control motion stages are required.  In this article we have 
outlined a path toward achieving useful picometer-level measurements, where measurements in 
independent interferometers must be related to each other in a non-trivial manner. Success in 
actually achieving this result is not guaranteed.  For example, we have relied on an assumption 
that dimensional instability due to helium absorption can be overcome either by making 
measurements on a fairly fast time scale (requiring very careful thermal management) or by 
employing non-permeable materials for the base plate (materials with which we have less 
experience and have some reservations regarding overall performance).  We nevertheless have 
outlined a plausible road map for reaching the desired goal.  Significantly different alternative 
approaches are also under consideration. The variable length cavities could be replaced by a 
variable length cell, where the pathlength through gas in the cell might be compared to 
pathlength in surrounding vacuum using an interferometer with a geometry as described by 
Weichert et al [3,4].  At the present time, drifts in this type of interferometer [4] would make it 
difficult to achieve our target accuracy, but the technology is still under development and may be 
expected to improve. A cell-based approach could reduce the complexity of a variable-length 
system.    

Systems designed around fixed-length cavities (or possibly fixed-length vacuum cells) can serve 
as excellent transportable measurement systems, and the potential errors of these systems can be 
characterized using the “gold standard” variable length approach.  For pressure measurement, the 
transportable systems will use nitrogen as the working medium, and the VLOC will be 
instrumental in high-precision measurements of the relationship between nitrogen refractive 
index and pressure.  
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