
Documentation of the synchronization board for
markIIIs

ROCHET Cedrick

Information Access Division
National Institute of Standards and Technology ∗

November 23, 2006

∗NIST, 100 Bureau Drive, Stop 3460, Gaithersburg, MD 20899-3460., www.nist.gov

1



Contents

1 Setup 3

2 schematics 8

3 VHDL code on the motherboard 8
3.1 The synchronization module . . . . . . . . . . . . . . . . . . 10
3.2 The capture module . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 The sram interface module . . . . . . . . . . . . . . . . . . . . 12
3.4 The capture_udp_frame module . . . . . . . . . . . . . . . . 14
3.5 The bootp module . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 The arp module . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 The response status module . . . . . . . . . . . . . . . . . . . 17
3.8 The mux4_1 module . . . . . . . . . . . . . . . . . . . . . . . 18
3.9 The CRC32 module . . . . . . . . . . . . . . . . . . . . . . . . 19
3.10 The tx_frame module . . . . . . . . . . . . . . . . . . . . . . . 19
3.11 The incoming message module . . . . . . . . . . . . . . . . . 20
3.12 The read incoming message module . . . . . . . . . . . . . . 20
3.13 The MI interface for configuration and status . . . . . . . . . 23

2



1 Setup

The kit is composed of the synchronization board, a power cable
and a RJ11 CAT5e cable. The following pictures present each one.

The setup of the system is quite simple. Proceed as follow:

1. Plug the synchronization board onto the motherboard.

3



2. Connect the power cable between both boards.

3. Connect the RJ11 cable in the master connector for the master card

4



4. Connect the RJ11 cable in the slave connector for the slave card

The card has the following inputs-outputs:

5



1. Master Out is the connector for the output synchronization signal of
the master array.

2. Slave In is the connector for the input synchronization signal from the
master array.

3. Slave Out is the connector for the ouptut synchronization sig-
nal from the master array. The system is built following
a chain of arrays with one slave array forwarding the sig-
nal to the next one as shown on the following schematic.

6



4. World clock Out is the connector to send a world clock signal to an-
other system. This signal is just the sampling frequency of the array.

5. 9V power In is the connector for recieving the power from the moth-
erboard.

6. 9V power Out is the connector to provide the 9V of the power
supply to any additional board. It can also be used to connect a
recommneded metal box to the ground.

7. Power Led indicates if the synchronization board recieves power.

7



2 schematics

3 VHDL code on the motherboard

In VHDL, there is one main module who contains all the other ones. The
figure 1 represents an overview of the eleven submodules interactions.

In order to go deeper in the explanations, we are going to take each of
the twelve modules :

• synchronization module,

• capture module,

• sram interface module,

• capture_udp_frame module,

• bootp module,

• arp module,

8



Figure 1: Gathering schematic of all the modules.

• response status module,

• mux4_1 module,

• CRC32 module,

• tx_frame module,

• incoming message module,

• read incoming message module.

In the main module, there is two sub-programs:

• Comptetemps: process to count time in seconds,

• state_machine: process used at startup to ask IP address as a starting
point to be completely operational.

The rest of this module is just the connection between the different sub-
modules like on figure 1.

9



3.1 The synchronization module

This module is used to synchronize multiple arrays and generate the right
clock for the capture module.

Figure 2: The capture module.

The master_clk is provided by the oscillator on the Motherboard. The
slave_clk is provided by an other Motherboard through the synchronization
board. The signal low_reset is used to initialize the state machines in the
module. The SCKI(System Clock) for the converters is generated from mas-
ter_clk or slave_clk depending on the mode of the array. It is at 11.289MHz
(22.050 ∗ 512).

First in master mode meaning when sync_slave is low, master_clk is
forwarded to the capture module through cap_clk. The start_capture_in
is a signal used to start the capture module by forwarding it through
start_capture_out but with a fixed delay read on start_offset(7:0). lrck
signal which is the sampling frequency of the system is forwarded to
sync_cap_clk_slave.

The signal sync_cap_clk_master is the signal distributed to the slave
Motherboards and received as sync_cap_clk_slave. It is a succession of 3
words:

• "0101101" to reset the clock divider in the FPGA,

• "0101001" to start capture,

• "0100101" to stop capture.

In slave mode meaning when sync_slave is high, slave_clk is forwarded
to the capture module through cap_clk. The system is waiting for its

10



command words though the input sync_cap_clk_slave upon reception of
the words it takes the same action as the master. Upon reception of the
start word, the start_capture_out is started but with a fixed delay read on
start_offset(7:0).

3.2 The capture module

It is part of the design where the data coming from the converters are stan-
dardized in packets.

The figure 3 can be decomposed it in two parts:

• the interface with the converters and

• the interface with the rest of the design which is a memory.

Figure 3: The capture module.

First, the signal start_capture is used at the beginning to tell when the
capture shall start. The cap_clk is the clock on which everything is synchro-
nized.

The interface with the converters is composed of 3 clocks (BCK, SCKI
and LRCK) and 32 inputs(std01-std32). cap_clk (33.8688MHz) is the main
clock that builds the 3 others (for the hardware see the clock stage). In fact
these clocks depends of the sampling rate. For example for a sampling rate
of 22.050kHz in 24 bits: LRCK (sampling clock) value is 22.050kHz, BCK

11



(Bit Clock) value is 1.058MHz (22.050 ∗ 24 ∗ 2) and SCKI(System Clock)
is 11.289MHz (22.050 ∗ 512). The signal double_frq_ad forces this module
to double the sampling frequency and in doing so doubles the volume of
data.

The return of the converters, stdxx, is serial so this module take care of
placing the different streams like describes in the figure 4.

Figure 4: Data organization in the memory.

The advantage of using a memory is in the fact that it is using a dual
port ram memory. So the process of capturing the data clocked on cap_clk
is independent from the rest of the design like the Ethernet or storage
part. So the sram interface module is interacting with a simple mem-
ory: data_capture_mem(15:0), addr_capture_mem(8:0), enable_capture_mem,
clk_capture_mem. The signal packet_ready tells the rest of the design when
the memory is filled and can be read.

3.3 The sram interface module

In this module, we are storing the data from the capture module into 4
physical memory chips on a bus of 32 bits. The storage is used as a buffer
of about 0.5 seconds in the case that the packet is incorrect or dropped by
the computer.

First, start_capture is a signal used at the beginning to tell when the cap-
ture shall start. The signal reset_sram_interface is used at startup to initialize
the signals inside the module. In this module, there is 3 input clocks:

12



Figure 5: The sram interface module.

• clk_sram_interface is the main clock through the module,

• clkd2_sram_interface is a just used to synchronize the division by 2 of
the main clock in this module and in the capture_udp_frame module,

• clk_sram_interface90 is used by the inner memory to compensate for
the delay in the data bus.

Basically, this module reads the data in the memory of the capture mod-
ule, transfers it to the external memory and then reads in the external mem-
ory the packet asked and put it in a memory that can be read by the cap-
ture_udp_frame module.

So the signals data_capture(15:0), addr_capture(8:0), enable_data_capture,
clk_sram_interface and packet_ready_capture are respectively connected
to data_capture_mem(15:0), addr_capture_mem(8:0), enable_capture_mem,
clk_capture_mem and packet_ready of the capture module.

As we have seen in the hardware, the signals sram_r_w (read/write
control), sram_oe (output enable), sram_ce (chip enable) are controlling the
external memory. The four 8 bits bus sram_io01, sram_io02, sram_io03,
sram_io04 are the data bus with the memory. The bus sram_addr(18:0) is
controlling the address of the external memory.

The capture_udp_frame module, connected to this module to get the
data out, is interacting with a simple memory: data_capture_udp(7:0),
addr_capture_udp(9:0), en_data_capture_udp, clkd2_sram_interface.

13



The signal packet_ready_capture_udp tells to the capture_udp_frame
module when the memory is filled and can be read. The bus nu-
mero_packet_capture_udp(10:0) gives the packet identifying number.

The signal capture_udp_buzzy tells when the memory is actually used by
the capture_udp_frame module.

To ask a missed packet, the mem_read_incoming_msg module sends
the information on the bus old_numero_packet(10:0) and put req_old_packet
to 1 until the information is used.

3.4 The capture_udp_frame module

This module is getting the data form the memory of the sram interface
module and put it in a UDP frame.

Figure 6: The capture_udp_frame module.

First, the clk_capture_udp is the main clock through this module. The
clock clkd2_capture_udp is a just used to synchronize the division by 2 of
the main clock in this module and in the sram interface module. the signal
reset is used at startup to initialize the state machine inside the module. The
signal buzzy tells to other modules that it’s making a frame while it is high.

The module builds the different UDP protocol fields from the inputs
destination_mac (MAC address of the destination provided by the main
module), source_mac (MAC address of the source provided by the main
module), destination_ip (IP address of the destination provided by the main
module), source_ip (IP address of the source provided by the main module).

The different protocols need more information than the few provided
by the main module but as they don’t really change from one message to

14



another, they are directly fixed in the software: the UDP port has been fixed
to 32767, the size of the packet to 964.

Figure 7: The data frame.

The data frame is constituted of different fields (cf figure 7) filled as
follow:

• type packet is on 1 byte: 86 (8 as response and 6 as response of type
6),

• numero packet is on 2 bytes in a range from 0 to 2048 (it’s correspond-
ing to the 11 highest bits of the sram memory address),

• reserved is on 1 byte,

• data is on 960 bytes: 64 channels * 3 bytes precision * 5 data frames.

This module is taking the data in the memory of the sram interface
module with the signals : data_capture_udp_in(7:0), addr_capture_udp(9:0),
en_data_capture_udp_in, clk_capture_udp (clock of the module).

And finally the module sends the complete message to the
mux4_1 module with req_capture_udp_frame, select_capture_udp_frame,
data_capture_udp_out(7:0) and en_data_capture_udp_out. For more informa-
tion, see the mux4_1 module.

3.5 The bootp module

This module is activated at startup in order to make a request IP address.
First, the clk_bootp is the main clock through this module. The signal

reset is used at startup to initialize the signals inside the module. The signal
buzzy tells to other modules that it’s making a frame while it is high. The
signal start_bootp activates the module.

Since you can fix the source_mac (MAC address of the source provided
by the main module) by hand with the DIP switch, this value couldn’t be
implemented in advance.

The signal seconds(7:0) gives the elapsing time since startup.
And finally the module sends the complete message to the mux4_1

module with req_bootp_frame, select_bootp_frame, data_bootp_out(7:0) and
en_data_bootp_out. For more information, see the mux4_1 module.

15



Figure 8: The bootp module.

3.6 The arp module

This module is activated to reply to an arp request to any computer placed
on the network.

Figure 9: The arp module.

First, the clk_arp is the main clock through this module. The signal reset
is used at startup to initialize the signals inside the module. The signal
buzzy tells to other modules that it’s making a frame while it is high. The
signal start_arp activates the module.

The module builds the different ARP protocol fields from the inputs
destination_mac (MAC address of the destination provided by the read in-
coming message module), source_mac (MAC address of the source provided
by the read incoming message module), destination_ip (IP address of the
destination provided by the read incoming message module), source_ip (IP
address of the source provided by the read incoming message module).

And finally the module sends the complete message to the

16



mux4_1 module with req_arp_frame, select_arp_frame, data_arp_out(7:0) and
en_data_arp_out. For more information, see the mux4_1 module.

3.7 The response status module

This module is activated to reply to any request made to the microphone
array and received and understood by the module read message.

Figure 10: The response status module.

First, the clk_response_status is the main clock through this module. The
signal reset is used at startup to initialize the signals inside the module. The
signal buzzy tells to other modules that it’s making a frame while it is high.
The signal start_arp activates the module.

The module builds the different UDP protocol fields from the inputs
destination_mac (MAC address of the destination provided by the read mes-
sage module), source_mac (MAC address of the microphone array), destina-
tion_ip (IP address of the destination provided by the read message mod-
ule), source_ip (IP address of the the microphone array), type_request(2:0)
(number given to identify the response) and data_request(9:0) (data of the
response).

Here is the different types of response implemented:

• request 02: status of slave/master mode,

• request 03: ID of the microphone array,

• request 05: status of the capture.

• request 08: status of the sampling frequency multiplier.

17



• request 11: value of the delay to start the capture. It used to com-
pansate the propagation of the synchronization signal from one array
to the other.

And finally the module sends the complete message to the mux4_1
module with req_response_status_frame, select_response_status_frame,
data_response_status_out(7:0) and en_data_response_status_out. For more
information, see the mux4_1 module.

3.8 The mux4_1 module

This module is a multiplexer of the bootp module output, arp module out-
put, response status module output and capture_udp_frame module that
sends the frame in the CRC32 module.

Figure 11: The mux4_1 module.

First, the clk_mux is the main clock through this module. The signal reset
is used at startup to initialize the signals inside the module.

18



One of the four previous module makes a request with req_in_x. Then
when the multiplexer is ready to give him the right of passage to the CRC32
module, the mux4_1 module put the signal select_x to high. At the same
time the data entering made by the signals en_d_in_x and d_in_x(7:0) is di-
rectly connected to en_data_mux_out and data_mux_out(7:0) which is con-
nected to the entry of the CRC32 module.

The signal tx_frame_ready tells when the previous frame has been sent
completely to the 80225.

3.9 The CRC32 module

This module is adding the CRC32 value of the frame at the end of it.

Figure 12: The CRC32 module.

This module is quite simple: it’s taking the data in data_crc32_in(7:0)
when en_data_crc32_in is high, adding the value of the computation of the
CRC32 at the end and sending the data through data_crc32_out(7:0) and
en_data_crc32_out to the tx_frame module.

3.10 The tx_frame module

This module is adding the preambule to the frame and changing from 8bit
wild to 4 bits wild to enter the 80225.

Figure 13: The tx_frame module.

19



Like the previous one, this module is quite simple: it’s taking the data
in data_tx_in(7:0) when en_data_tx_in is high, adding the preamble in front
and sending the whole message to the 80225 through data_tx_out(3:0) and
en_data_tx_out.

3.11 The incoming message module

This module takes any message coming form the Ethernet physical layer
device, filters the messages with the right MAC address , verify the CRC32
of it and put it in the memory of the FPGA to put read.

Figure 14: The incoming message module.

The data from the 80225 are coming from the signals rx_clk,
rx_dv and rxd(3:0). The message MAC address destination is com-
pared to the signal sa(47:0) and if everything is right recv_packet
goes high. Then the module read_incoming_message reads it in the
memory with clk_incoming_message_mem, addr_incoming_message_mem(7:0),
data_incoming_message_mem(15:0) and enable_incoming_message_mem until
end_addr(7:0).

3.12 The read incoming message module

This module is one of the most complex of the design because it’s reading
the memory in the incoming message module and takes action based on
the message.

The data read from the incoming message module is passing by
clk_mem_read, addr_incoming_msg_mem(7:0), data_incoming_msg_mem(15:0)
and enable_incoming_msg_mem until end_addr_msg(7:0) when the signal
recv_packet_msg went high.

In any case it stores the MAC and IP address of the sender
mac_sender(31:0), ip_sender(47:0)) and tests if the IP address of destination is
correct. In our case the one of the microphone array, my_ip(31:0).

20



Figure 15: The read incoming message module.

As the message is read along, the module determines the kind of mes-
sage depending of the protocol used:

• ARP: req_arp goes high and the IP source is src_ip_arp_req(31:0),

• BOOTP: req_bootp goes high and the IP is given with bootp_ip(31:0)
after verification of the "random" number ID(31:0),

• request 01: slave/master mode. the output is sync_slave_on,

• request 02: ask the status of the slave/master mode. The
output are req_response_request=1, type_response_request(3:0)= "0010",
data_request(9:0)="0x00000000x" (x=1 means slave mode activated),

• request 03: ask the ID of the microphone array. The out-
put are req_response_request=1, type_response_request(2:0)= "0011",
data_request(9:0)=MAC address microphone array(9:0),

• request 04: capture on/off. the output is start_capture,

21



• request 05: ask the status of the capture. The output
are req_response_request=1, type_response_request(3:0)= "0101",
data_request(9:0)="0000000000x" (x=1 means capture mode acti-
vated),

• request 06: ask the packet in memory with the number
old_numero_packet(10:0) and request_oldpacket goes high.

If the microphone is not in capture mode, it will send back an er-
ror with the output req_response_request=1, type_response_request(3:0)=
"0110", data_request(9:0)="0001101110" (binary for ’n’).

• request 07: sampling frequency is doubled or not. The output is dou-
ble_frq_ad and up when doubled.

• request 08: ask the status of the sampling frequency multiplier. The
output are req_response_request=1, type_response_request(3:0)= "0111",
data_request(9:0)="0000000000x" (x=1 means sampling frequency dou-
bled),

• request 09: ask a range of packets in memory through the
number old_numero_packet(10:0) and request_old_packet goes high.
old_numero_packet(10:0) is increasing by one at each request_old_packet
until it meets the end value of the range. Be careful in using this func-
tion because it won’t stop the normal data packet traffic but will insert
the packets asked in the middle of the data traffic... The activation of
this option on range more than 5 packets can overload your network
card under to much traffic... Remember that at normal operation the
traffic on the line is about 4.4MBytes per second.

If the microphone is not in capture mode, it will send back an er-
ror with the output req_response_request=1, type_response_request(3:0)=
"0110", data_request(9:0)="0001101110" (binary for ’n’).

• request 10: set the value of the delay in the start of the capture the
output is start_offset(7:0)

• request 11: ask the value of the delay in the start of the capture. The
output are req_response_request=1, type_response_request(3:0)= "1011",
data_request(9:0)=value of the offset.

If one of the signals arp_frame_buzzy or response_request_buzzy is high
then if an other frame come along the current one is ignored.

22



The signal priority_sender permits to differentiate the IP and MAC ad-
dress of the computer receiving the data of the capture from another one
making a request.

3.13 The MI interface for configuration and status

The MI( Media Interface) is the interface with the 80225 registers.
The 80225 has a MI serial port to access the device’s configuration in-

puts and read out the status outputs.the MI serial port consists of 8 lines:
MDC, MDIO, MDINT, and MDA[3:0]. However, only 2 lines, MDC and
MDIO, are needed to shift data in and out. So this permits the engine of the
design to configure the 80225. But since everything is in auto-negotiation
there is no real use of it.

23


	Setup
	schematics
	VHDL code on the motherboard
	The synchronization module
	The capture module
	The sram interface module
	The capture_udp_frame module
	The bootp module
	The arp module
	The response status module
	The mux4_1 module
	The CRC32 module
	The tx_frame module
	The incoming message module
	The read incoming message module
	The MI interface for configuration and status


