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Abstract

The usual error model for calibration experiments is
extended to situations where there are both short-term
and long-term random errors of measurement. Such
error models are useful where short-term errors are
related to instrumentation, and long-term errors are
related to operating procedures, environmental fac-
tors or changes in the artifacts themselves. The con-
cept of a check standard is advanced for estimating
variability and maintaining statistical control of the
measurement process.

Introduction

Comparison calibration relates a characteristic of an
artifact or instrument to the defined unit for the quan-
tity of interest. A reference standard, whose value has
been independently established, is the basis for assign-
ing a value to the unknown artifact. For calibrations at
the highest accuracy levels, very precise comparators
with linear responses over a small on-scale range are
used to quantify small differences between artifacts of
the same nominal value. We describe an error model
and analysis where two unknowns are compared with
two reference standards according to a specific design.

Calibration Model

In the simplest case, an unknown X with value X*, yet
to be determined, is assumed to be related to a refer-
ence standard R with known value R* by

X*=A+R*

where A is small but not necessarily negligible.

* Formerly, the U.S. National Bureau of Standards

Given a measurement x on the unknown and a
measurement r on the reference standard, the re-
sponses are assumed to be of the form

x=n+X*+e,
and 1
r=n+R*+e,

where 7 is instrumental offset and e, and e, are inde-
pendent random errors which come from a distribu-
tion with mean zero and standard deviation o.

The value of 4 is estimated ! by the difference A
where

A=x—r (2

and the value assigned to the unknown artifact is
based on the known value of the reference standard
R¥*, called the restraint, according to

X* = A + R*. 3)

The standard deviation of this estimate, 6, depends
on the error structure for X* which is of the form

X*=X*+e,—e 4
so that

ox =/20. (5)

Calibration Designs

A more complicated case involves the calibration of
several unknowns, such as a weight set of various de-
nominations or 4 group of voltage cells in a temper-
ature-controlled enclosure, relative to a single refer-
ence standard or group of standards. Any difference
measurements which compare unknowns and refer-
ence standards with one another and each other are
candidates for the calibration procedure.

! Boldface type is used to denote a least-squares estimate from

the data such as .1
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A calibration design is a subset of all candidate
measurements which admits a least-squares solution
for the unknowns. The design is constructed to be
parsimonious so as, on one hand, to minimize the
number of measurements and, on the other hand, to
give estimates with reasonably high precision. We rec-
ognize that precision depends on the number of mea-
surements, and Grabe [1] has shown how precision
depends on the construction of the design. As we show
in this paper, precision can also be limited by other
factors.

In the earliest references to designs by Hayford and
Benoit [2, 3], the term “weighing design” is used to
describe a sequence of measurements for calibrating a
weight set. In papers published in the 1960s and 1970s,
Bose and Cameron {4, 5] and Chakravarti and Surya-
narayana [6] extend the theory and application of
designs; Cameron and Eicke [7]solve a problem pecu-
liar to electrical circuits; and Cameron and Hailes [8]
discuss the situation where there is drift in the mea-
surement process. Recent publications [9-12] show
that designs now enjoy general acceptance in the cali-
bration laboratory and are routinely used for the cali-
bration of mechanical and electrical units of measure-
ment, as well as for mass measurements,

Expanded Calibration Model

Throughout this development, the one constant as-
sumption has been that random errors of measure-
ment are independent and come from a single error
distribution (such as the normal distribution), With
more precise measurement systems, we are now able to
identify situations where these assumptions are called
into question and a more realistic model is needed. We
find that random errors of measurement for a single
design, which takes at most a few hours’ time, are not
of the same magnitude as errors which afflict the mea-
surement process over the course of several designs or
days 2. Thus, we are forced to admit two error distribu-

2 The statistical term for this phenomenon is components of
error with the errors sometimes referred to as within-time and
between-time random errors

dy = {RY +03,} —{R% +6g,}
dy = {RY +dg,}
dy = {RY+6,}
dy =

ds = {R% +0g,}

_|
)
Il

tions, one that arises in the short-term and one that
arises in the long term.

It is convenient to think in terms of short-term
instrumental variations and long-term artifact changes
caused by environmental conditions and the like. The
latter are assumed to vary randomly from design to
design and to be constant for a single design. The
model in (1) is expanded to include both types of errors
so that

x=0+{X¥+dy: +e,

6
r=r]+{R*+5R}+e,, ()

where e, and e, are short-term errors of (1), and dy and
dr, which represent long-term changes associated with
X and R, come from a distribution with mean zero and
standard deviation &y,

The error structure of the estimate, X*, given by

X*=X*4+0y—g+e.—e W)

now contains both types of error terms, and the stan-
dard deviation o4 becomes

oy = (202 + 20%)'2.

Application to Designs

Standard deviations associated with solutions to a de-
sign depend upon the error structures of the model. We
illustrate with an example where two unknown arti-
facts X, and X, with unknown values X§ and X¥ are
calibrated relative to two reference standards R, and
R, with values R} and R%. All items have the same
nominal value. A design consisting of the six compari-
sonsd,, ..., dq that can be made among the four items,
two at a time, can be represented as:

Obs R, R, X, X

d, 1 -1

d, 1 —1

d, 1 -1
ds 1 -t

ds 1 -1
dg 1 -1

The model that follows from this design is:
+ &

—{Xi""&)(l} +&

— (X3 +3x,) +e5

(RE +65,) — (XF +x ) e, ®

—{XF+0x,} - &5

{XF+0x,} —{XT+0x,} + &



The terms ¢, , ..., & represent random errors of mea-
surement and the terms dg, , 0, , Ox, , and dy, represent
random changes in the artifacts. It is assumed that the
¢ terms come from a distribution with mean zero and
standard deviation o,, and that the é terms come from
a distribution with mean zero and standard deviation
gy. All random errors are assumed to be mutually
independent.

The solution to the design depends on the restraint.
If the restraint is taken to be the average of the refer-
ence standards or

R* =3 (RT+RY),

then least-squares estimates (see, for example, Came-
ron et al. [13])are as follows:

Rt =}( 2d,+d, +d; —d, —ds) +R*

R =1(-2d,—d, —d; +d, +ds) +R* )
X¥=4( —3dy~dy —3d,—ds +2ds)+ R*
X3 =4( —d, —3dy—d, —3ds—2d¢) + R*

We rewrite the solutions in terms of model (8) and
collect error terms to obtain

—¢ _ _
5) Oxl = o-xz =
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standard for this purpose, and values of the check
standard from many designs provide the basis for esti-
mating ay,.

For designs involving two reference standards, we
create a check standard based on the difference be-
tween the two reference standards. For the design of
(), this difference

C=R}-R} (12)
which is indepeudent of the restraint, has an error
structure of the form

C=RT_ ;+ %186R|—85R2+481+282+283

—~2¢e,—2¢s). (13)
with associated standard deviation
oc = (20 + L a2)"2. (14)
Hence
o, = (o0& — 03)'"? (15)

and (11) can be reduced to
UR‘ = UR; = %JC

and (16)

G

Gc .

R =RY+1( 40g,—40,+2¢; +&; +&3 —&4

RY = Ry + L (—403,+40p,—2¢, —&; —&3 +&; +&5)

XP =XP+L(—40p, —40p, +80x,—36,—8; —3eg—8s +265) (10)
X¥ =X¥+1(—40p, —40,+80x,—¢, —3e3—¢&, —3&5—2¢)

Associated standard deviations are found from (10) as
follows 3:

og, = 0Og, = (0% + §03)'" .
and (11)

- = (3 52 3 .23y1.2
Ox —sz—(iﬂb'i'gﬂw) .

1

The structure of (11) indicates how precision depends
on the relationship between the components of error.
For all four estimates, the contribution to the total
variance from ¢ is four times larger than the contribu-
tion from ¢2; thus, the size of oy, relative to o, deter-
mines to what extent precision is affected by the num-
ber of design points.

Check Standard

The quantity ¢, can only be estimated from many
designs involving the same artifact. Because calibra-
tions are usually performed on a one-time basis, the
prerequisite data for this analysis does not usually
exist on the unknown itself. Thus, we designate a check

3 These equations are valid where R* is known without random
error: see the section headed, “A Matrix Approach”, for the
case where R* is subject to random error

Estimates of Standard Deviations from the Data

Given n designs with check standard values
Cy,....C,, the quantity o is estimated with (n—1)
degrees of freedom by

1 n 1/2
5c=("_ )3 (C;—C)z) (17)
n—1;=3
where C is the average of the check standard values *.
The standard deviation, ¢,,, is estimated from a
single design with (m —k + 1) degrees of freedom where
m is the number of comparisons in the design; k is the
number of artifacts; and the additional degree of free-
dom comes from the known value of the restraint. For
the design given by (8), the standard deviation a,, is
estimated with three degrees of freedom by

1 6 1/2
Su = (3 z (di—d,)z) (18)

4 This method of estimating the standard deviation assumes
that the check standard is not drifting over time
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where d; is the predicted value for each difference
measurement from the design; i.e.,

d, =R} — R}
d, = R} —- Xt
dy =Rt -X2
d, = R — X¥
ds = R} —-X}
dg = X¥ — X$

We can improve the estimate of o, by pooling the
standard deviations s, ..., S,, from the n designs.
The pooled value s, , which has 3 n degrees of freedom,
is computed as

1 n 2 1/2
5, = (- s (19)

For the purpose of making statements of precision or
uncertainty the population standard deviations g, 7,
and o are replaced by their respective estimates in the
appropriate equations.

Process Control

Two aspects of statistical process control are relevant
in the calibration process. Short-term control for mea-
surements constituting a single design depends on g,,,
and long-term control for calibrations over time de-
pends on o, via check standard measurements. The
latter depends upon reliable estimates from historical
data for the mean, C, and the standard deviation, s¢.
For any new calibration, the check standard value, C,
is tested for agreement with past data by a t statistic
where

_le-¢|

S¢

t

The process is judged to be in control if
t< t¢,2 (V)

where t,, (v) is the upper a/2 percentage point of Stu-
dent’s t distribution [14] with v degrees of freedom.
Otherwise, the calibration is discarded.

Short-term control for each design is exercised by
comparing the standard deviation from the design, s,,,
with a pooled value s, from historical data. An F sta-
tistic is computed as

F=si/sk.

Short-term precision is regarded as being in control
if

FSF«(Vlsz)

where F,(v,,v,) is the upper a percentage point of
Snedecor’s F distribution [15] with v, degrees of free-

dom in s,, and v, degrees of freedom in s,. Failure to
meet this condition is taken as an indication that pre-
cision has deteriorated, and the current calibration
results are discarded.

Case Study From Mass Calibration

The National Institute of Standards and Technology
(NIST) maintains about thirty check standards for
mass calibrations. These check standards, which cover
a variety of designs, load levels, and balances, consti-
tute the data base for constructing uncertainties asso-
ciated with mass calibrations and for implementing
statistical control of the calibration process.

The data base, which covers the last twenty years
of calibration history at NIST, is reviewed on an an-
nual basis to update uncertainty statements and to
expose any trends or anomalies in the process. Stan-
dard deviations from the designs, s,,, are pooled by
balance. Standard deviations for each check standard,
Sc, are estimated by (17).

Analysis confirms that the long-term component of
error, sy, is negligible for the mass-calibration process
except at the critical kilogram level. The majority of
mass calibrations at NIST start at the kilogram level
using the design of (8) with the restraint as the average
of two reference kilograms and a check standard C as
defined by (12). Standard deviations for this process
are shown in the table below.

Standard Deviations at the Kilogram Level

Source Notation Eq.  Std. dev.

Kg balance Sp (19) 00316 mg
Check standard S¢ 17) 00277 mg
Long-term change s, (15) 0.0116 mg
Unknowns Sx,» Sx, (16) 0.0240 mg

Weights other than kilograms are related to the NIST
unit of mass via a hierarchy of designs where the re-
straint for each design is taken from the solution to the
previous design. For example, at the kilogram level,
the unknown X, is a group of weights totaling a kilo-
gram; the group constitutes the starting restraint for
the next design in the series. Thus, any random error
that influences the value assigned to X, is propagated
to all other weights.

Application to Other Designs

The standard deviation associated with a measure-
ment must be defined on a design-by-design basis. A



matrix approach is outlined in the next section; also
see Croarkin [16, 17] for specific formulations for a
design involving two reference standards and three
unknowns and a design involving four reference stan-
dards and four unknowns.

The problem of definition can sometimes be avoid-
ed by judicious choice of a check standard. If one
chooses a check standard with the same error struc-
ture as the artifacts being calibrated, then the standard
deviation for the check standard also applies to the
calibrated artifacts. For example, if we make all ten
comparisons among five artifacts of the same nominal
value, where one artifact is a designated check stan-
dard, then the check standard will have the same error
structure as the unknowns.

A Matrix Approach

A matrix approach is outlined for estimating compo-
nents of variance for any measurement design where
there are both short-term random errors of measure-
ment and long-term random changes in the artifacts.
We also allow for the situation where the restraint has
been estimated from a previous experiment, and the
random errors associated with that measurement pro-
cess are taken into account.

Given m difference measurements among k arti-
facts, where some artifacts are regarded as reference
standards and some are regarded as test items or un-
knowns, the model for the measurement process

D=A[X*+6]+¢ (20)

is shown in terms of matrix elements. The elements
and their respective dimensions are defined as follows:

- D
(mx1)

- A
(m * k)c . 13 v, . . .
or minus one in the j'® position indicates that the j*
artifact is involved in the i'® comparison and a zero
indicates the converse

— X*
k+ 1)

- 0
tkx1) L
standard deviation o,

a matrix of difference measurements

a matrix of zeroes and ones such that a plus

a matrix of unknown values for the k artifacts

a matrix of random errors with zero mean and

- g amatrix of random errors with zero mean and

{mx1) L.
standard deviation o,

Because the matrix 4 has rank (k — 1), a solution for an
unknown X*, as shown by Zelen [18], is achieved by
imposing upon the system a restraint, or known value
for a linear combination of the artifacts. Let the scalar
R* be the restraint, and let % be a vector of zeroes
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and ones such that a one in the j* position indicates
that the j'™ artifact is in the restraint and a zero indi-
cates the converse.

For example, the vector ®
=011 0...0

(1 xk)

indicates that the restraint R* is the summation for the
first two artifacts.

Then a solution can be found from an augmented
matrix B where

AA L AD

(k x k) (kx1) kx1)

B = % 0 R*
(k+2)x(k+2) (1xk) (1x1}) (1x1)
J 0 ~1
(1<k) (1x1) (1x1)

has an inverse of he form

h X*
(kxk)  (kx1)  (kx1)
Bt = K 0 °
(k+2)x(k+2) (1 xk) (1x1) (1x1)
. ° °
(1 x k) (1x1) {(1x1)

and Q is the covariance matrix; X* is the vector of
estimates for the unknowns; and other entries (e) are
irrelevant for this application.

The deviations from the fit are given by the vector
{ where

¢ =[D-AX*]

(1 xm)
and the standard deviation for the design &, is esti-
mated by

sw=(L\“’
m—k+1)

with m—k +1 degrees of freedom.

It is now as:imed that a check standard C is
tracked for many applications of the same design over
time. The estimated value of C for any particular de-
sign is given by

C = Zc[X¥]

where, for example,

Y =01 -1 0...0)
(1 xk)

indicates that the check standard is the computed dif-
ference between the first and second artifacts.

5 The mark (') indicates the transpose of a matrix
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The standard deviation ¢, can be estimated from
the relationship

0¢ — ZclQ] Leod
ZelQA' 4] Zc

where o¢ and o,, should be estimated from the data of
several designs .

Now consider a single unknown X; whose esti-
mated value is

X =[%,)'[X*] 1)
where, for example,

Zx, =0 1 0..0)

(1 xk)

signifies that X; refers to the second artifact in the
design. Then the appropriate standard deviation for X}

ot =

To account for weights of various denominations, let
W be a vector of nominal values for the k weights of
the second series so that

W =(W,..., W).

(1xk

Now we redefine the design matrix 4 and the restraint
vector % for the next series and let

R"' = X:
and
Op = Oy, .

The matrix B and its inverse B~! follow accordingly.
The Y, vectors are also redefined for the weights in the
series so that estimates can be computed according to
(21). Then the appropriate standard deviation for the
j™ weight, X;, is given by (25) which follows:

) ' W 2 1/2
gy, = [[gx,y[g 4 4[5, 108+ ) Q) [&Jah(%f}ﬂ—,w) aé] (25)

is given by

ox, = (Zx]' Q4" Al [Fx,] of +[Lx ] [Q] [Fx ) 02)'2
(22)

and the standard deviation associated with any linear
combination of the unknowns is computed in a similar
fashion. At this stage we assume that R* is known
without random error. Eq. (25) is appropriate if this
assumption is not valid.

Mass calibration is a special case because values
are assigned to sets of weights covering several denom-

Standard deviations for the check standard for this
series and other combinations of weights are com-
puted similarly. It is noted that the process standard
deviations, g, and ¢,,, depend on the balance and the
denominations of weights calibrated in the series; thus,
they should be estimated separately for each series.

The process is extended to the next series by re-
defining the vector %; so that it identifies the out-
going restraint whose value is given by (23). Then the
standard deviation for this restraint is given by (26)
which follows:

(LI WY

172
Oxy = l:[-?z]'[Q A Al %) o3+ (%) Q) (L] od + (W) vé] (26)

inations of mass. All values are related to a starting
restraint, such as a kilogram reference standard, by a
series of interrelated designs. The first series includes
as an unknown, a single weight or a summation of
weights, which becomes the restraint for the following
series and so on throughout the entire weight set.
Thus, we must account for imprecision associated with
restraints after the first series.

Let %5 be a (k x 1) vector that defines the unknown
whose value will be used as the restraint in the next
series; this out-going restraint has value

X; = [Z:]'[X¥]. (23)

The standard deviation associated with this restraint is

computed as

ox. = (Z:)'[Q 4’ Al [F;) of + [£:]'[Q) [(F] 02) /2.
(24)

6 See the discussion under “Check Standard” and Eqs. (16) and
(18)

The standard deviations given by (22) and (24) are
appropriate for values estimated in the initial series of
weighings where the starting restraint is a known
value. For values assigned by subsequent series of
weighings, the imprecision of the estimated restraint
contributes a component to the total standard devia-
tion. Thus, (25) a1.d (26) are appropriate.

Concluding Remarks

The proposed error model is especially enlightening
where short-term errors are related to instrumenta-
tion. Then long-term errors are the result of operating
procedures or environmental changes which affect
the artifacts over time but are reasonably constant in
the short-term so as not to affect the standard devia-
tion from the design. Thus, there is motivation for
isolating the long-term component in order to ascer-



tain whether precision can be improved given current
instrumentation.

Other models may prove more useful or descrip-
tive for other situations. For example, for mass cali-
brations which deal with weights of the same nominal
mass, it is reasonable to assume that random changes
in the weights can be characterized by a single error
distribution. However, for weights which are not of the
same nominal mass, we would allow for errors propor-
tional to mass or, perhaps, to surface area.

Finally, the analysis of the design for four artifacts
demonstrates that improved precision cannot always
be attained by increasing the number of measurements
in the design. The relative magnitudes of ¢,, and ¢, and
their contribution to the total variance must be under-
stood before one can improve precision.

Acknowledgments. The author wishes to thank Dr. Richard
Davis of the National Institute of Standards and Technology,
who is responsible for maintaining the NIST unit of mass, for his
interest and advice on the subject at hand.

References

1. M. Grabe: Metrologia 14, 143-146 (1978)

2. J. A. Hayford: On the least-square adjustment of weighings,
U.S. Coast and Geodetic Survey Report for 1892, Appendix
10

3. J.-R. Benoit: L'étalonnage des séries de poids, Trav. Mém.
BIPM vol. 13, 1907

10.

11.

17.
18.

113

. R. C. Bose, J. M. Cameron: J. Res. Natl, Bur. Stand., Sect.
B: 79, 323-332 {1965)

. R. C. Bose, J. M. Cameron: J. Res. Natl. Bur. Stand., Sect.
B: 71, 149-160 (1967)

. I. M. Chakravarti, K. V. Suryanarayana: J. Combin. Theory
13, 426-431 (1964)

. J. M. Cameron, W. G. Eicke: Designs for the Surveillance of
the Volt Maintained by a Small Group of Saturated Standard
Cells, Natl. Bur. Stand. (U.S.) Tech. Note 430 (1967)

. J. M. Cameron, G. E. Hailes: Designs for the Calibration of
Small Groups of Standards in the Presence of Drift, Natl.
Bur. Stand. (U.S.) Tech. Note 844 (1974)

. C. P. Reeve: The Calibration of Indexing Tables by Subdivi-

sion, Natl. Bur. Stand. (U.S.) report NBSIR 75-750 (1975)

J. M. Cameron, M. C. Croarkin, R. C. Raybold: Designs for

the Calibration of Standards of Mass, Natl. Bur. Stand (U.S.)

Tech. Note 952 (1977)

C. P. Reeve: The Calibration of a Roundness Standard, Natl.

Bur. Stand. (U.S.) report NBSIR 79-1758 (1979)

. C. P. Reeve: The Calibration of Angle Blocks by Inter-

comparison, Natl. Bur. Stand. (U.S.) report NBSIR 80-1967
(1980)

. J. M. Cameron, M. C. Croarkin, R. C. Raybold: Ref 10
(above), pp. 10-11

. E. S. Pearson, H. O. Hartley (eds.): Biometrika Tables for
Statisticians, Vol. I {Cambridge University Press, Cam-
bridge 1956), p. 138

. Ibid,, pp. 157-163

. M. C. Croarkin: Measurement Assurance Programs, Part II:

Development an’ Implementation, Natl. Bur. Stand. (U.S.)

Spec. Publ. 676-11 (1985), pp. 54-58

Ibid,, pp. 66-75

M. Zelen: Linear Estimation and Related Topics, in: Survey

of Numerical Analysis, J. Todd (ed.) (McGraw Hill, New

York 1962), pp. 563-565



