SIM Metrology School: Pressure

Douglas A. Olson R. Greg Driver

Physical Measurement Laboratory National Institute of Standards and Technology

October 31, 2013

Why is pressure important?

Weather prediction Aviation: Altimetry, air speed, jet engines Transportation: engine performance Health Industrial processes: wafer production Energy: oil-well pressure, pipeline flow

Pressure is a derived unit

- Pressure = Force / Area = mass x acceleration / area = Mg/A
 - Force has units of kg \times m/s², Area has units of m²
- Traceability through mass (kilogram) and length (meter) (gravity requires time)
- Traceability depends on realization method
 - That is, what physical device (standard) establishes the pressure?
 - Does the standard require other measurements (example: temperature)?
- We will focus on Pressure Standards rather than Pressure Measurement

Common Pressure Standards

Piston gauges: 10 kPa to 500 MPa

Vacuum standards: 10^{-7} Pa to 10 Pa (10^{-9} torr to 0.1 torr)

Liquid column manometers: 1 mPa to 360 kPa

Note: barometric pressure is 100 kPa at sea level Blood pressure is 10 kPa to 30 kPa

National Institute of Standards and Technology

4

Mercury Manometers: NIST version

- Lowest uncertainties (5.2 ppm, *k*=2)
- Implementation is a length measurement
 - 1 mm Hg = 133 Pa
- Technically difficult to operate and maintain
- Commercial versions cost \$500k
- Contain hazardous substance
- Not practical for most labs

$$\Delta p = \rho g \Delta h$$

Vacuum Standards

NIST Dynamic Expansion Standard

- Uncertainties 0.3 % and up
- Requires expertise in vacuum technology
- Primary method requires gas flow measurement
 - Comparative standards can be purchased
 - Vacuum chamber with calibrated gauge
 - Not practical for most labs

- Spinning Rotor Gauge
- Steel Ball is suspended & spun in electro-magnetic field
- Pressure determined from deceleration rate
- Range: 10⁻⁴ Pa to 1 Pa

Piston Gauge Pressure Standards: This Course

- Can be used from 10 kPa to 500 MPa, liquid or gas
- Uncertainties (*k*=2) of 10 ppm to 40 ppm
- Commercially available, but highest quality from small number of manufacturers
- Portable, easy to operate
- Pressure set by increments of mass
- Systems have become more automated in last decade
- Wide level of expertise at National Metrology Institutes, calibration labs, industry in their use
- Piston gauge traceability by 2 methods
 - Dimensional measurement of metrological artifact (piston and cylinder) or –
 - Comparison to another pressure standards (piston gauge or manometer)
- Piston gauges used to calibrate:
 - Other piston gauges
 - Electronic (or analogue) pressure instruments

Ruska 2465 Piston Gauge Base and Piston-Cylinder Assembly (V-series, 7 MPa)

National Institute of Standards and Technology

NS

Various Piston Gauge Platforms (*other names* pressure balance, dead weight gauge, dead weight tester)

Temperature and piston position

Integrated Monitor: T, h, rotation, fall rate

Automated Mass Handler

Piston gauges are used to calibrate other piston gauges and electronic transducers.

Piston Gauge Operation and Performance

- Piston position: usually midstroke
 - Electronic sensing of position. Fluke 7000 series is built into base.
- Piston and mass rotation: 10 to 30 rpm
- Protection from air drafts
- Verticality of piston
 - Level piston or base
- Lab conditions: low vibration, steady temperature
- Piston temperature affects area and pressure
- Leak tight plumbing
- Good piston operation: observe rotation decay, fall rate, sensitivity
- Equilibration time at operating T and P
 - Pressure changes cause temperature changes;
 - Temperature changes cause pressure changes

Pressure from a Piston Gauge

Pressure from a Piston Gauge

- A_e = Effective area at T_R
- m_i = mass of weights
- g = gravity
- ρ_{a} = ambient density surrounding wts
- ρ_{mi} = density of weights
- $\gamma = surface tension$
- C = piston circumference
- α_{p} , α_{c} = piston and cylinder thermal expansion coefficient
- T = piston temperature
- T_{REF} = reference temperature

Note: The calibration of one piston gauge against another piston gauge is called a crossfloat

$$p = \frac{\sum_{i} m_{i} g\left(1 - \frac{\rho_{a}}{\rho_{mi}}\right) + \gamma C}{A_{e} \left(1 + \left(\alpha_{p} + \alpha_{c}\right)\left(T - T_{REF}\right)\right)}$$

Pressure from a Piston Gauge: Importance of Terms

- *A_e* Obtain from calibration certificate (or measure dimensions: much more difficult and expensive)
 - Largest uncertainty component (6 ppm to 40 ppm)
 - May be a function of pressure
- *m* Obtain form mass calibration
 - Second largest uncertainty, < 1 ppm to 10 ppm
- $(1-\rho_a/\rho_m)$ buoyance correction
 - 150 ppm for gauge mode, 0 ppm for absolute mode
 - Uncertainty < 2 ppm
 - Air density needs to be measured in gauge mode for a transducer calibration. Need P_{amb}, T_{amb}, rh
 - In a crossfloat calibration, each gauge has same buoyancy correction. Air density not so critical
- $ho_{\rm m}$ Must be considered with mass calibration
 - Did mass lab include density uncertainty in mass uncertainty?

 \textit{m}_{i} was assigned using measured force and a value of ρ_{mi}

$$\boldsymbol{m}_{i}\boldsymbol{g}\left(1-\frac{\rho_{a}}{\rho_{mi}}\right)=\boldsymbol{m}_{R}\boldsymbol{g}\left(1-\frac{\rho_{a}}{\rho_{mR}}\right)$$

Pressure from a Piston Gauge: Importance of Terms

- $\alpha_p + \alpha_c \sim 9 \times 10^{-6}$ m/m/K; thermal expansion 10 ppm if T-T_R = 1 K
 - If your T is different from T_R where A_e was determined, uncertainty in thermal expansion coefficient may be important. Usually < 1 ppm
- T Thermometer must be traceable. 0.1 C uncertainty is 1 ppm in pressure
- g Needed at site of use. For a crossfloat, g cancels. For a transducer calibration, p sees full g uncertainty
- γC Surface tension = 0 for gas media. For a 10 mm D piston in oil, ST equivalent to 30 mg mass.

Pressure at the Transducer from a Piston Gauge

$$\boldsymbol{p}_{T} = \boldsymbol{p}_{PG} - (\rho_{f} - \rho_{a})\boldsymbol{g}\boldsymbol{h}$$
Head correction

h = reference level difference between transducer and PG ρ_f = density of pressurizing fluid

- For gas media, 1 cm in *h* corresponds to 1 ppm in *P*.
 Uncertainties in h rarely important
- For liquid media, 1 mm in *h* corresponds to 9 Pa. Head correction and uncertainty in *h* and ρ_f significant if P < 10 MPa, less important for high P.
- Piston height sensors provide *h* resolution to < 0.1 mm

Experimental Setup for a Pressure Calibration

Bell jar not evacuated for gauge mode

Calibration Procedure for a Crossfloat

- 1. Unpack gauge
- 2. Connect pressure port.
- 3. Check vertical alignment.
- 4 & 5.Determine reference level and differences
- 6. Check thermometer readings. Record ambient conditions (T, P_{amb}, rh)
- 7. Check or calibrate piston vertical position indicator
- 8. Add calibrated masses.
- 9. Apply pressure and elevate pistons.
- 10. Rotate masses. If rotation is difficult, investigate and resolve
- 11. Place covers over masses if required. Evacuate if absolute mode.
- 12. Check for leaks or excessive fall rates. Fix if needed.
- 13. Wait for pressure stability (5 to 30 minutes, depending on gauge, media or pressure change).
- 14. Determine balance condition. Adjust masses if needed. (More detail later)
 - This step not required for a transducer calibration
- 15. Record masses and temperatures. Record vacuum if absolute mode.
- 16. Lower pistons by reducing pressure.
- 17. Add new masses and repeat from step 9.

Reference Level of a Piston

- For solid, straight pistons, reference level is bottom of piston
- For irregular shape, need to account for additional fluid displacement at the density and area of the piston
- Example: flange on a piston

Calibrating a Piston Gauge with another Piston Gauge

- The *test* and *ref* piston gauges each produce a pressure
- A fluid line connects *test* and *ref* gauges.
- When the gauges produce the same pressure at a common location in the fluid line (and no fluid movement), they are in equilibrium
- Pressure of the gauge is adjusted by changing mass

$$p_T = p_R - (\rho_f - \rho_a)gh$$

Effective Area for a Piston Gauge

$$\frac{\sum m_{i,T}g\left(1-\frac{\rho_{a}}{\rho_{mi,T}}\right)+\gamma C_{T}}{A_{e,T}\left(1+\alpha_{T}\left(T_{T}-T_{REF}\right)\right)} = \frac{\sum m_{i,R}g\left(1-\frac{\rho_{a}}{\rho_{mi,R}}\right)+\gamma C_{R}}{A_{e,R}\left(1+\alpha_{STD}\left(T_{R}-T_{REF}\right)\right)} - \left(\rho_{f}-\rho_{a}\right)gh$$
Pressure of Test PG
Pressure of Ref Standard PG
Head Correction

Rearrange to solve for A_{e,T}: *The Measurement Equation for Piston Gauge Calibrations*

$$A_{e,T} = A_{e,R} \cdot \frac{\sum m_{i,T} \left(1 - \frac{\rho_a}{\rho_{mi,T}} \right) + \frac{\gamma C_T}{g}}{\sum m_{i,R} \left(1 - \frac{\rho_a}{\rho_{mi,R}} \right) + \frac{\gamma C_R}{g}} \cdot \frac{\left(1 + \alpha_R \left(T_R - T_{REF} \right) \right)}{\left(1 + \alpha_T \left(T_T - T_{REF} \right) \right)} \cdot \frac{1}{\left(1 - \frac{\left(\rho_f - \rho_a \right)gh}{p} \right)}$$

Thermal expansion coefficients have been combined Note g cancels out Assumes pressure from two PGs are in equilibrium (balanced)

Experimental Setup for a Crossfloat (PG) Calibration DP Cell Method

Experimental Setup for a Crossfloat (PG) Calibration Fall Rate or Transducer Assisted Crossfloat Method

- Fall rate: measure piston fall rates when CVVs closed and open. Adjust mass
- Transducer Assisted Crossfloat (TAC): sequence PGs to transducer with alternate CCV1/CVV2 open and close. Equal pressures not necessary

National Institute of Standards and Technology

Relative Advantages of Balancing Methods

- DP Cell
 - Skilled technician required
 - Balance can be achieved quickly. Most widely used
 - Requires DP Cell to match pressure range
 - Computer not required
- Fall Rate
 - Can be used at any pressure
 - Need recording of piston height vs time (computer). Stopwatch/position indicator/computer
 - Slow if piston fall rate is slow.
 - Skilled technician; need to understand performance of PG vs h, etc.
- TAC
 - Need precise pressure transducer
 - Automated
 - Not dependent on technician skill
 - Equal pressures not required

Fitting Calibration Data of Piston Gauges

- Measure A_e vs P at 10 pressures, space equally from low to high, plot results
- Fit to model of A_e vs P
- In the model below, A₀, b₁, b₂, and t are fitting coefficients
- Use linear least squares to determine coefficients

$$A_{e,f} = A_0(1 + b_1 p + b_2 p^2) - t / p$$

- Fit to several models (less terms to more). Look at standard deviation of residuals.
- If adding term does not decrease residual, don't include
- b₂ is nearly always insignificant
- b₁ (linear distortion) needed above 1 MPa.
- t accounts for hook at low pressure. Can indicate mass errors or residual forces. Try to fit without it.

Type A Uncertainty: Fitting Calibration Data

- Increasing *n* (observations) reduces Type A uncertainty, increases time and cost
- Regression in linear model below can be performed in Excel, where

$$A_{e,f} = A_0 + A_1 p$$
 , with $b_1 = A_1 \, / \, A_0$

• The Type A uncertainty of the calibration is the uncertainty of the fitted line, not the uncertainty of the coefficients. For the linear model:

$$u_{A}(A_{e,f}) = \left(\frac{\sigma^{2}}{n} + \left(u(b_{1})(p_{fit} - p_{ave})\right)^{2}\right)^{1/2}$$

Where:
$$\sigma = \left[\frac{1}{n-2}\sum_{i=1}^{n} \left(A_{e,f} - A_{e}\right)^{2}\right]^{1/2}$$

Obtain from regression analysis
Average of *n* measured pressures

National Institute of Standards and Technology

Type A Uncertainty: Fitting Calibration Data

- Constant model $A_{e,f} = A_0 \ , A_0 = \frac{1}{n} \sum_{i=1}^n A_e$
- The Type A uncertainty of the calibration is the uncertainty of A₀

$$u_{A}(A_{0}) = \left[\frac{1}{n(n-1)}\sum_{i=1}^{n}(A_{0}-A_{e})^{2}\right]^{1/2}$$

Fit Example: Oil gauge Calibration, 10 MPa to 110 MPa

Data 4.90350E-06 Fit Fit+2uc 4.90300E-06 Fit-2uc З 4.90250E-06 Area / I 4.90200E-06 4.90150E-06 4.90100E-06 0.0E+00 4.0E+07 8.0E+07 1.2E+08 Pressure / Pa $A_{e,fit2} = A_0$ $t \mid p$ Area: data, fit, & comb. expand. uncert. Data 4.90280E-06 Fit 4.90260E-06 Fit+2uc 4.90240E-06 Fit-2uc 4.90220E-06 ea / m² 4.90200E-06 4.90180E-06 Ł 4.90160E-06 4.90140E-06 4.90120E-06 4.90100E-06 4.90080E-06 0.0E+00 4.0E+07 8.0E+07 1.2E+08 Pressure / Pa $A_{e,fit5} = A_0(1 + b_1 p + b_2 p^2)$

Area: data, fit, & comb. expand. uncert.

National Institute of Standards and Technology

Fit Example: Oil Cal, 10 MPa to 110 MPa, Residual Plots

28

Fit Example: Oil Cal, 10 MPa to 110 MPa

In this example, fit 5 is chosen because it produces the smallest data scatter with no structure in the residuals

$$A_{e,fit5} = A_0(1 + b_1 p + b_2 p^2)$$

 $A_0 (m^2) = 4.902501E-06$ $b_1 (Pa^{-1}) = -3.209E-12$ $b_2 (Pa^{-2}) = 6.310E-21$

Р	A_{fit}	u_A/A	и _В /А	$2u_C/A$
(MPa)	(m ²)	x10 ⁶	x10 ⁶	x10 ⁶
10.00	4.902347E-06	2.1	19.3	38.9
15.00	4.902272E-06	1.8	19.1	38.4
20.00	4.902199E-06	1.5	19.1	38.2
25.00	4.902127E-06	1.3	19.0	38.1
30.00	4.902057E-06	1.2	19.0	38.1
35.00	4.901988E-06	1.1	19.0	38.1
40.00	4.901921E-06	1.1	19.0	38.0
45.00	4.901856E-06	1.1	19.0	38.0
50.00	4.901792E-06	1.1	19.0	38.0
55.00	4.901729E-06	1.1	19.0	38.0
60.00	4.901668E-06	1.1	19.0	38.0
65.00	4.901609E-06	1.1	19.0	38.0
70.00	4.901551E-06	1.0	19.0	38.0
75.00	4.901495E-06	1.0	19.0	38.0
80.00	4.901440E-06	0.9	19.0	38.0
85.00	4.901387E-06	0.9	19.0	38.0
90.00	4.901336E-06	0.9	19.0	38.0
95.00	4.901286E-06	1.0	19.0	38.0
100.00	4.901237E-06	1.2	19.0	38.0
105.00	4.901190E-06	1.5	19.0	38.1
110.00	4.901145E-06	1.8	19.0	38.1

Summary of Calibration Procedures

- Know your piston gauge platform and reference standard gauge
- Establish a calibration procedure and follow it
 - Leaks, unsteady lab temperatures, calibrating too quickly must be avoided
- Determine traceability of measurements affecting result
 - Area, mass, temperature for all cals
 - Vacuum for absolute P, air density for pressure cals
 - Ambient P if gauge mode piston gauge used to calibrate absolute mode transducer
- Measure A vs P (or p_T vs P) evenly over instrument span, 10 pts or more
- Fit data to appropriate models
 - Linear distortion for piston gauge
 - Polynomial fits for pressure transducers
- Use of data fitting and statistical software very useful
- Graphs of data aid choice of fits

Uncertainty Analysis Method

Type A

Determine from statistics of fit or repeated measurements

Type B

- Determine measurement equation
- Identify uncertainty components
- Define sensitivity coefficients
- Estimate standard uncertainties of components
- Sum the uncertainty components

1. Pressure standard: piston gauge. Device under test: Piston gauge

2. Pressure standard: piston gauge. Device under test: electronic pressure instrument (transducer). *Notes are provided, will not be discussed*

Basic Uncertainty Analysis

- Include Type A and Type B uncertainty components
- Type A estimated from repeated measurements or statistics of fit
- Type B estimated from law of propagation of uncertainty applied to measurement equation *and other relevant considerations*
- Add components at *k*=1 (standard) level
- Apply coverage factor (usually *k*=2) for expanded uncertainty

$$u_{c} = \left(u_{A}^{2} + u_{B}^{2}\right)^{1/2}, \quad U_{c} = ku_{c}, \quad k = 2$$

$$A_{e} = A_{e}\left(x_{1}, x_{2}, \dots, x_{N}\right), \quad u_{B}^{2}(A_{e}) = \sum_{i=1}^{N} \left(\frac{\partial A_{e}}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + \text{correlated terms}$$

$$u_{xi} = \frac{\partial A_{e}}{\partial x_{i}} u(x_{i}), \quad u_{B}^{2}(A_{e}) = \left(u_{x1}^{2} + u_{x2}^{2} + u_{x3}^{2} + \dots + u_{xN}^{2}\right)$$

 x_i are the variables in the measurement equation (A, m, T, etc.) dA_e/dx_i are the sensitivity coefficients $u(x_i)$ are the uncertainties of the variables.

National Institute of Standards and Technology

Case 1: DUT=piston gauge

Measurement Equation

$$A_{e,T} = A_{e,R} \cdot \frac{\sum m_{i,T} \left(1 - \frac{\rho_a}{\rho_{mi,T}} \right) + \frac{\gamma C_T}{g}}{\sum m_{i,R} \left(1 - \frac{\rho_a}{\rho_{mi,R}} \right) + \frac{\gamma C_R}{g}} \cdot \frac{\left(1 + \overline{\alpha}_R \left(T_R - T_{REF} \right) \right)}{\left(1 + \overline{\alpha}_T \left(T_T - T_{REF} \right) \right)} \cdot \frac{1}{\left(1 - \frac{\left(\rho_f - \rho_a \right)gh}{p} \right)}$$

Uncertainty Terms for Type B

$$u_{B}^{2}\left(A_{e,T}\right) = u_{A_{e,R}}^{2} + u_{M_{R}}^{2} + u_{M_{T}}^{2} + u_{\rho_{a}}^{2} + u_{\rho_{MR}}^{2} + u_{\rho_{MT}}^{2} + u_{\gamma}^{2} + u_{C_{R}}^{2} + u_{C_{T}}^{2} + u_{g}^{2} + u_{\bar{\alpha}_{R}}^{2} + u_{\bar{\alpha}_{R}^{2} + u_{\bar$$

Area of standard and masses are usually most important

Case 1: Uncertainty due to Ref Piston Gauge Area, u_{Ae,R}

Sensitivity Coefficient

$$\frac{\partial A_{e,T}}{\partial A_{e,R}} = \frac{A_{e,T}}{A_{e,R}}$$

Standard uncertainty, $u(A_{e,R})$

- From calibration of piston gauge
- Usually the largest component

 $u_{Ae,R}$ = 6 ppm to 20 ppm of $A_{e,R}$

Case 1: Uncertainty due to Ref Piston Gauge Masses, u_{MR}

Sensitivity Coefficient

$$\frac{\partial A_{e,T}}{\partial M_R} = -\frac{A_{e,T}}{M_R}$$

Standard uncertainty, u(M_R)

- From mass calibration
- Assume correlated, meaning uncertainty of the sum of masses are added geometrically rather than in quadrature u(M_R)=u(m_{1R})+u(m_{2R})+...+u(m_{nR})
- Need to know if density uncertainty was included in mass uncertainty quoted by mass calibration

Case 1: Uncertainty due to Test Piston Gauge Masses, u_{MT}

Sensitivity Coefficient

$$\frac{\partial A_{e,T}}{\partial M_T} = \frac{A_{e,T}}{M_T}$$

Standard uncertainty, $u(M_T)$

- From mass calibration
- Assume correlated, meaning uncertainty of the sum of masses are added geometrically rather than in quadrature u(M_T)=u(m_{1T})+u(m_{2T})+...+u(m_{nT})
- Need to know if density uncertainty was included in mass uncertainty quoted by mass calibration
- Assume not correlated with Ref masses

Case 1: Uncertainty due to Ref PG Mass Density, u_{pMR}

Sensitivity Coefficient

- assumes mass density uncertainty not included in mass calibration
- assumes mass calibration at ambient pressure

 $\rho_{a,cal}$ is air density at time of mass cal. Air density diff ~ 0.03 kg/m³ Sensitivity coefficient is larger in absolute mode

Standard uncertainty, $u(\rho_{M,R})$

- OIML R 111-1: guidelines to measure. If not measured, $u(\rho_{M,R}) = 70 \text{ kg/m}^3$ for SS.
- If mass density uncertainty was included in mass calibration
 - Absolute mode: set = 0 to avoid double counting.
 - Gauge mode: ask for mass uncertainty without density uncertainty.

OIML R 111-1 at http://www.fundmetrology.ru/depository/04_IntDoc_all/R_E_111-1.pdf

Case 1: Uncertainty due to Test PG Mass Density, u_{pMT}

Sensitivity Coefficient

- assumes mass density uncertainty not included in mass calibration
- assumes mass calibration at ambient pressure

Gauge modeAbsolute mode $\frac{\partial A_{e,T}}{\partial \rho_{M,T}} = A_{e,T} \frac{\left(\rho_a - \rho_{a,cal}\right)}{\rho_{M,T}^2}$ $\frac{\partial A_{e,T}}{\partial \rho_{M,T}} = -A_{e,T} \frac{\rho_{a,cal}}{\rho_{M,T}^2}$

 $\rho_{a,cal}$ is air density at time of mass cal. Air density diff ~ 0.03 kg/m³ Sensitivity coefficient is larger in absolute mode

Standard uncertainty, $u(\rho_{M,T})$

- OIML R 111-1: guidelines to measure. If not measured, $u(\rho_{M,T}) = 70 \text{ kg/m}^3$ for SS.
- If mass density uncertainty was included in mass calibration
 - Absolute mode: set = 0 to avoid double counting.
 - Gauge mode: ask for mass uncertainty without density uncertainty.

OIML R 111-1 at http://www.fundmetrology.ru/depository/04_IntDoc_all/R_E_111-1.pdf

Case 1: Uncertainty due to Air Density, u_{DA}

Sensitivity Coefficient (0 for absolute mode)

- Assumes all ref mass densities the same, all test mass densities the same
- First term is due to buoyancy correction, second term is due to head correction

$$\frac{\partial A_{e,T}}{\partial \rho_a} = A_{e,T} \left[\frac{\rho_{M,T} - \rho_{M,R}}{\rho_{M,T} \cdot \rho_{M,R}} - \frac{gh}{p} \right]$$

Standard uncertainty, $u(\rho_a)$

- If ρ_a measured, u(ρ_a) due to u(P_{amb}), u(T_{amb}). Likely < 0.01 kg/m³
- If not measured, estimate ~0.03 kg/m³

 $u_{\rho A}$ nearly always < 0.1 ppm

Case 1: Uncertainty due to Surface Tension, u_{γ}

Sensitivity Coefficient (0 for gas media)

$$\frac{\partial A_{e,T}}{\partial \gamma} = A_{e,T} \cdot \frac{C_R}{M_R g} \left(\frac{D_R}{D_T} - 1 \right)$$

Standard uncertainty, $u(\gamma)$

• Term is always insignificant even for oil

Case 1: Uncertainty due to Piston Circumference, as it contributes to Surface Tension Force, u_{CR} & u_{CT}

Sensitivity Coefficients for both C_R and C_T (0 for gas media)

$$\frac{\partial A_{e,T}}{\partial C_R} = -A_{e,T} \cdot \frac{\gamma}{M_R g} \qquad \qquad \frac{\partial A_{e,T}}{\partial C_T} = A_{e,T} \cdot \frac{\gamma}{M_T g}$$

Standard uncertainty, $u(C_R)$, $u(C_T)$

• Could be estimated from piston diameter uncertainty

Always insignificant

Case 1: Uncertainty due to Gravity, u_g

Sensitivity Coefficient

- Gravity cancels on Ref and Test piston gauge masses (not so for transducer cal)
- Only effect is head correction

$$\frac{\partial A_{e,T}}{\partial g} = A_{e,T} \frac{(\rho_f - \rho_a)h}{p}$$

Standard uncertainty, u(g)

• Could be estimated from gravity survey

Always insignificant for cals of piston gauges

Case 1: Uncertainty due to thermal expansion, $u_{\alpha R} \& u_{\alpha T}$

Sensitivity Coefficients for both Ref and Test piston gauges

$$\frac{\partial A_{e,T}}{\partial \overline{\alpha}_R} = A_{e,T} (T_R - T_{REF}) \qquad \qquad \frac{\partial A_{e,T}}{\partial \overline{\alpha}_T} = -A_{e,T} (T_T - T_{REF})$$

Standard uncertainty, $u(\alpha_R)$ and $u(\alpha_T)$

- Estimate as $u(\alpha) = 0.06x\alpha$ (rectangular distr. of 10 %)
- Can be minimized by operating T close to reference temperature

If $\Delta T = 1$ C, uncertainty is 0.5 ppm: small but not insignificant

Case 1: Uncertainty due to Temperature, u_{TR} & u_{TT}

Sensitivity Coefficients for both Ref and Test piston gauges

$$\frac{\partial A_{e,T}}{\partial T_R} = A_{e,T}\overline{\alpha}_R \qquad \qquad \frac{\partial A_{e,T}}{\partial T_T} = -A_{e,T}\overline{\alpha}_T$$

Standard uncertainty, $u(T_R)$ and $u(T_T)$

• Depends on thermometer calibration, placement of thermometer near piston

 u_{TR} , u_{TT} : f u(T) = 0.1 C, uncertainty is 1 ppm: small but not insignificant

Case 1: Uncertainty due to Fluid Density, u_{of}

Sensitivity Coefficient

$$\frac{\partial A_{e,T}}{\partial \rho_f} = A_{e,T} \frac{gh}{p}$$

Standard uncertainty, $u(\rho_f)$

- Gas: insignificant
- Can be minimized by reducing h
- Oil: if not measured, estimate as 1 % of fluid density

 u_{of} in oil: for h = 0.1 m, can be 10 Pa/p. Can become important at p < 10 MPa

Case 1: Uncertainty due to reference height difference, u_h

Sensitivity Coefficient

$$\frac{\partial A_{e,T}}{\partial h} = A_{e,T} \frac{(\rho_f - \rho_a)g}{p_T}$$

Standard uncertainty, u(h)

- Gas: insignificant
- Depends on position resolution of both pistons, measurement of reference level difference. At NIST, we take u(h) = 1 mm

 u_h in oil: 10 Pa/*p*. Can become important at *p* < 10 MPa

Case 1: Summary of Type B uncertainties, 200 kPa Gas, gauge mode

Uncertainty term			Sensitivity coefficient divided by $A_{e,T}$			Standard uncertainty		Rel. unc.	
Name	Symbol	Value	Units	Definition	Abs value	Units	Value	Units	on $A_{e,T}$
REF Area	$A_{e,R}$	8.397E-05	m ²	$1/A_{e,R}$	11909	m ⁻²	3.63E-10	m^2	4.33E-06
REF Mass	M_R	1.714	kg	$-1/M_{R}$	0.584	kg ⁻¹	3.43E-06	kg	2.00E-06
TEST Mass	M_T	1.714	kg	$1/M_T$	0.583	kg ⁻¹	3.43E-06	kg	2.00E-06
Ambient density	$ ho_{a}$	1.18	kg/m ³	$\Delta ho_M / (ho_{MT} ho_{MR}) - gh/p_T$	9.80E-07	m ³ /kg	0.03	kg/m ³	2.94E-08
REF mass dens.	$ ho_{\it MR}$	7800	kg/m ³	$(\rho_{a,cal}-\rho_a)/\rho_{MR}^2$	4.93E-10	m ³ /kg	45.0	kg/m ³	2.22E-08
TEST mass dens.	$ ho_{\it MT}$	7800	kg/m ³	$(\rho_a - \rho_{a,cal})/\rho_{MT}^2$	4.93E-10	m ³ /kg	45.0	kg/m ³	2.22E-08
Surface tension	γ	0.000	N/m	$C_R / (M_R g) (D_R / D_T - 1)$	3.11E-07	m/N	0.000	N/m	0.000
REF piston circ.	C_R	3.25E-02	m	$-\gamma/(M_R g)$	0.000	1/m	3.25E-05	m	0.000
TEST piston circ.	C_T	3.25E-02	m	$\gamma/(M_Tg)$	0.000	1/m	3.25E-05	m	0.000
Gravity	8	9.801011	m/s ²	$(\rho_f - \rho_a)h/p_T$	2.33E-07	s²/m	2.00E-06	m/s ²	4.66E-13
REF therm. exp.	$\alpha_{p,R} + \alpha_{c,R}$	9.10E-06	C^{-1}	T_{R} - 23.00	0.50	С	5.25E-07	C^{-1}	2.63E-07
TEST therm. exp.	$\alpha_{p,T} + \alpha_{c,T}$	9.10E-06	C ⁻¹	$-(T_T - 23.00)$	0.50	С	5.25E-07	C ⁻¹	2.63E-07
REF temperature	T_R	22.50	С	$\alpha_{p,R} + \alpha_{c,R}$	9.10E-06	C^{-1}	0.058	С	5.25E-07
TEST temperature	T_T	22.50	С	$-(\alpha_{p,T}+\alpha_{c,T})$	9.10E-06	C^{-1}	0.058	С	5.25E-07
Fluid density	$ ho_{f}$	3.51	kg/m ³	gh/P_T	9.80E-07	m ³ /kg	3.51E-03	kg/m ³	3.44E-09
Height difference	h	0.02	m	$(\rho_f - \rho_a)g/p_T$	1.14E-04	1/m	0.001	m	1.14E-07
Press. equilibrium	ΔP	0.00	Pa	- 1/p _T	5.00E-06	1/Pa	0.12	Pa	5.84E-07
					Relative combinded standard unc.				5.27E-06

Remember, these are at *k*=1!

Case 1: Summary of Type B Uncertainties, 5 MPa oil, gauge mode

Uncertainty term			Sensitivity coefficient divided by $A_{e,T}$			Standard uncertainty		Rel. unc.	
Name	Symbol	Value	Units	Definition	Abs Value	Units	Value	Units	on $A_{e,T}$
REF Area	$A_{e,R}$	8.402E-05	m^2	$1/A_{e,R}$	11901.89	m ⁻²	9.24E-10	m ²	1.10E-05
REF Mass	M_R	42.86	kg	$-1/M_{R}$	2.33E-02	kg ⁻¹	1.24E-04	kg	2.89E-06
TEST Mass	M_T	42.85	kg	$1/M_T$	2.33E-02	kg ⁻¹	1.24E-04	kg	2.89E-06
Ambient density	$ ho_{a}$	1.18	kg/m ³	$\Delta \rho_M / (\rho_{MT} \rho_{MR}) - gh/p_T$	9.80E-08	m ³ /kg	0.030	kg/m ³	2.94E-09
REF mass dens.	$ ho_{\it MR}$	7800	kg/m ³	$(\rho_{a,cal}-\rho_a)/\rho_{MR}^2$	4.93E-10	m ³ /kg	45.0	kg/m ³	2.22E-08
TEST mass dens.	$ ho_{MT}$	7800	kg/m ³	$(\rho_a - \rho_{a,cal})/\rho_{MT}^2$	4.93E-10	m ³ /kg	45.0	kg/m ³	2.22E-08
Surface tension	γ	3.06E-02	N/m	$C_R / (M_R g) (D_R / D_T - 1)$	9.33E-09	m/N	1.77E-03	N/m	1.65E-11
REF piston circ.	C_R	3.25E-02	m	$-\gamma/(M_R g)$	7.28E-05	1/m	3.25E-05	m	2.37E-09
TEST piston circ.	C _T	3.25E-02	m	$\gamma/(M_T g)$	7.29E-05	1/m	3.25E-05	m	2.37E-09
Gravity	g	9.801011	m/s ²	$(\rho_f - \rho_a)h/p_T$	8.57E-06	s²/m	2.00E-06	m/s ²	1.71E-11
REF therm. exp.	$\alpha_{p,R} + \alpha_{c,R}$	9.10E-06	C^{-1}	<i>T_R</i> - 23.00	0.50	С	5.25E-07	C^{-1}	2.63E-07
TEST therm. exp.	$\alpha_{p,T} + \alpha_{c,T}$	9.10E-06	C ⁻¹	$-(T_T - 23.00)$	0.50	С	5.25E-07	C ⁻¹	2.63E-07
REF temperature	T_R	23.50	С	$\alpha_{p,R} + \alpha_{c,R}$	9.10E-06	C^{-1}	0.058	С	5.25E-07
TEST temperature	T_T	23.50	С	$-(\alpha_{p,T}+\alpha_{c,T})$	9.10E-06	C^{-1}	0.058	С	5.25E-07
Fluid density	$ ho_{f}$	857.8	kg/m ³	gh/p_T	9.80E-08	m ³ /kg	9.91	kg/m ³	9.71E-07
Height difference	h	0.05	m	$(\rho_f - \rho_a)g/p_T$	1.68E-03	1/m	0.001	m	1.68E-06
Press. equilibrium	ΔP	0.00	Pa	-1/p _T	2.00E-07	1/Pa	5.83	Pa	1.17E-06
					Relative combinded standard unc.				1.20E-05

Remember, these are at *k*=1!

Case 1: Summary Comments for Type B

- For most cases, the largest components (Area of standard, masses, thermometer calibration) are not dependent on experimental conditions
- Can develop general Type B uncertainty expressions that cover most conditions
- E.g., NIST PG13 in gauge mode

$$\frac{u_B}{A_e} = \left(\left(\frac{1.18}{p} \right)^2 + \left(6.53E \cdot 6 \right)^2 + \left(1.12E \cdot 12\left(p - 828704 \right) \right)^2 + \left(\frac{0.29}{p} h \right)^2 \right)^{1/2}$$

• Need to consider long term stability of your piston gauge standard

Combined Uncertainty $u_c = (u_A^2 + u_B^2)^{1/2}, U_c = ku_c, k = 2$

- Gas piston gauge calibration, gauge mode, 7 MPa
- Linear fit. Combined uncertainty dominated by Type B

Summary of Uncertainty Analysis

- Use appropriate measurement equation for the type of calibration
- Uncertainties in PG effective area and masses are always important
- Minimize differences in reference level, especially for oil calibrations below 10 MPa
- Air density and gravity are more important in a pressure calibration than an effective area calibration
- Need to know if mass calibration included uncertainty of the density of the masses
- Type B uncertainties for piston gauges are usually dominant
- If providing a calibration equation to characterize the DUT, Type A uncertainty should be that of the fitted equation

Case 2: DUT = pressure transducer

Measurement Equation

$$p_{T} = \frac{\sum_{i} m_{i} g \left(1 - \frac{\rho_{a}}{\rho_{mi}} \right) + \gamma C}{A_{e} \left(1 + \left(\alpha_{p} + \alpha_{c} \right) \left(T - T_{REF} \right) \right)} + p_{V} - \left(\rho_{f} - \rho_{a} \right) g h$$

Uncertainty Terms for Type B

$$u_B^2(p_T) = u_{A_e}^2 + u_M^2 + u_{\rho_a}^2 + u_{\rho_M}^2 + u_{\gamma}^2 + u_C^2 + u_g^2 + u_{\overline{\alpha}}^2 + u_T^2 + u_{\rho_f}^2 + u_h^2 + u_{\rho_V}^2$$

Area of standard and masses are usually most important Surface tension force insignificant Gravity uncertainty contributes directly to pressure uncertainty

In gauge mode, 1 % unc. in air density contributes 1.3 ppm unc. in pressure

Case 2: Uncertainty due to Piston Gauge Area, u_{Ae}

Sensitivity Coefficient

$$\frac{\partial \boldsymbol{p}_T}{\partial \boldsymbol{A}_e} = -\frac{\boldsymbol{p}_T}{\boldsymbol{A}_e}$$

Standard uncertainty, $u(A_e)$

- From calibration of piston gauge
- Usually the largest component

 u_{Ae} = 6 to 20 ppm of A_e

Case 2: Uncertainty due to Piston Gauge Masses, u_{MR}

Sensitivity Coefficient

$$\frac{\partial p_T}{\partial M} = \frac{p_T}{M}$$

Standard uncertainty, u(M)

- From mass calibration
- Assume correlated, meaning uncertainty of the sum of masses are added geometrically rather than in quadrature u(M)=u(m₁)+u(m₂)+...+u(m_n)
- Need to know if density uncertainty was included in mass uncertainty quoted by mass calibration

Case 2: Uncertainty due to Air Density, u_{DA}

Sensitivity Coefficient (0 for absolute mode)

• First term is due to buoyancy correction, second term is due to head correction

$$\frac{\partial p_T}{\partial \rho_a} = -\frac{p_T}{\rho_m} + gh$$

Standard uncertainty, $u(\rho_a)$

• Need to measure ρ_a ; u(ρ_a) due to u(P_{amb}), u(T_{amb}). Likely < 0.01 kg/m³

 $u_{\rho A}$ 1.3 ppm if $u(\rho_a) = 0.01 \text{ kg/m}^3$

Case 2: Uncertainty due to PG Mass Density, u_{oM}

Sensitivity Coefficient

- assumes mass density uncertainty not included in mass calibration
- assumes mass calibration at ambient pressure

 $\rho_{a,cal}$ is air density at time of mass cal. Air density diff ~ 0.03 kg/m³ Sensitivity coefficient is larger in absolute mode

Standard uncertainty, $u(\rho_{M,R})$

• OIML R 111-1: guidelines to measure. If not measured, $u(\rho_{M,R}) = 70 \text{ kg/m}^3$ for SS.

 $u_{\rho M}$ = 1.3 ppm (absolute mode, $u(\rho_{M,R})$ = 70 kg/m³). Ignore in gauge mode

If mass density uncertainty was included in mass calibration

- Absolute mode: set = 0 to avoid double counting.
- Gauge mode: ask for mass uncertainty without density uncertainty.

OIML R 111-1 at http://www.fundmetrology.ru/depository/04_IntDoc_all/R_E_111-1.pdf

Case 2: Uncertainty due to Gravity, u_g

Sensitivity Coefficient

- Gravity more important than in piston gauge calibration
- Head correction ignored compared to mass force

$$\frac{\partial p_T}{\partial g} = \frac{p_T}{g}$$

Standard uncertainty, u(g)

• At NIST we use u(g) = 0.2 ppm. Will be larger if not measured.

Case 2: Uncertainty due to thermal expansion and temperature, $u_{\alpha} \& u_{T}$

Sensitivity Coefficients

$$\frac{\partial p_T}{\partial \overline{\alpha}} = -p_T (T - T_{REF}) \qquad \qquad \frac{\partial p_T}{\partial T} = -p_T \overline{\alpha}$$

Standard uncertainty, $u(\alpha)$ and u(T)

• Same considerations as for piston gauge calibration. Uncertainties can be 0.5 ppm to 1.0 ppm

Case 2: Uncertainty due to Fluid Density, u_{of}

Sensitivity Coefficient

$$\frac{\partial p_T}{\partial \rho_f} = -gh$$

Standard uncertainty, $u(\rho_f)$

- Gas: insignificant
- Can be minimized by reducing h
- Oil: if not measured, estimate as 1 % of fluid density

 u_{of} in oil: for h = 0.1 m, can be 10 Pa. Can become important at p < 10 MPa

Case 2: Uncertainty due to reference height difference, u_h

Sensitivity Coefficient

$$\frac{\partial p_T}{\partial h} = -\left(\rho_f - \rho_a\right)g$$

Standard uncertainty, u(h)

- Gas: insignificant
- Depends on position resolution of both pistons, measurement of reference level difference. At NIST, we take u(h) = 1 mm

 u_h in oil: 10 Pa. Can become important at **p** < 10 MPa

Case 2: Uncertainty due to bell jar pressure, u_{PV}

Sensitivity Coefficient

$$\frac{\partial \boldsymbol{p}_T}{\partial \boldsymbol{p}_V} = \mathbf{1}$$

Standard uncertainty, u(p_v)

- Comes from vacuum gauge calibration
- If $p_v = 2$ Pa, $u(p_v) = 0.5$ % of p_{v_v} this is insignificant except for p < 10 kPa

Case 2: Summary of uncertainties, 100 kPa, absolute mode

Uncertainty term			Sensitivity coefficient divided by p_T			Standard uncertainty		Rel. unc.	
Name	Symbol	Value	Units	Definition	Abs value	Units	Value	Units	on p_T
PG Area	A_{E}	3.357E-04	m^2	-1/A _E	2979	m^{-2}	1.88E-09	m ²	5.59E-06
PG Mass	М	3.425	kg	1/M	0.292	kg ⁻¹	6.85E-06	kg	2.00E-06
Ambient density	ρ_{a}	0.000	kg/m ³	$-1/\rho_M + gh/p_T$	1.09E-04	m ³ /kg	1.14E-07	kg/m ³	1.24E-11
Mass density	$ ho_M$	7800	kg/m ³	$(\rho_a - \rho_{a,cal})/\rho_M^2$	1.94E-08	m ³ /kg	45.03	kg/m ³	8.73E-07
Surface tension	γ	0.000	N/m	C/(<i>Mg</i>)	1.93E-03	m/N	0.000	N/m	0.000
PG circum.	С	6.50E-02	m	$\gamma/(Mg)$	0.000	1/m	6.50E-05	m	0.000
Gravity	g	9.801011	m/s ²	1/g	0.102	s²/m	2.00E-06	m/s ²	2.04E-07
PG therm. exp.	$\alpha_p + \alpha_c$	1.46E-05	C^{-1}	-(T - 23.00)	0.50	С	8.40E-07	C^{-1}	4.20E-07
PG temperature	Т	22.50	С	$-(\alpha_p + \alpha_c)$	1.46E-05	C^{-1}	0.0577	С	8.40E-07
Fluid density	$ ho_{f}$	1.14	kg/m ³	$-gh/p_T$	1.96E-05	m ³ /kg	0.0011	kg/m ³	2.23E-08
Height difference	h	0.20	m	$-(\rho_f - \rho_a)g/p_T$	1.12E-04	1/m	8.20E-04	m	9.16E-08
Bell jar pressure	p_{V}	2.00	Pa	1/p _T	1.00E-05	1/Pa	0.010	Pa	1.00E-07
					Relative combinded standard unc.				6.08E-06