

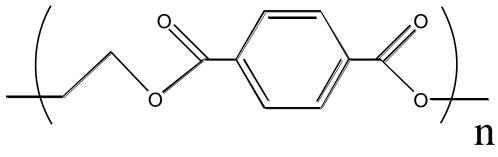
Using Indoor Component Accelerated Stress Testing to Extrapolate to Outdoor Use

2nd Atlas/NIST Workshop on Photovoltaic Materials Durability

Michael Kempe, John Wohlgemuth

Wednesday, November 13, 2013

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

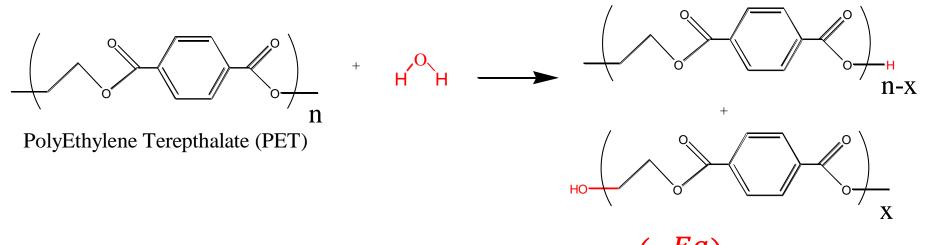

Introduction

- PV modules degrade in response to environmental stresses such as heat, humidity, UV irradiation, CTE mismatch, high voltage, and etc..
- Many degradation processes are driven by complex combinations of these stress factors.
- For some mechanisms, it is possible to quantify the governing kinetics and extrapolate long term performance.
- Getting highly predictive data is possible, but most accurate with narrow, well defined scope.

Outline

- Look at the hydrolysis of a typical back-sheet made of PET as a case study for comparing 85 °C/85% RH to outdoor exposure.
- Investigate moisture ingress modeling through edge-seal materials.
- Look at crystalline Si corrosion model extrapolating to outdoor use.
 - (uses data from Kent Whitfield et al. Formerly with Solaria).

PET Hydrolysis Modeling



PolyEthylene Terepthalate (PET)

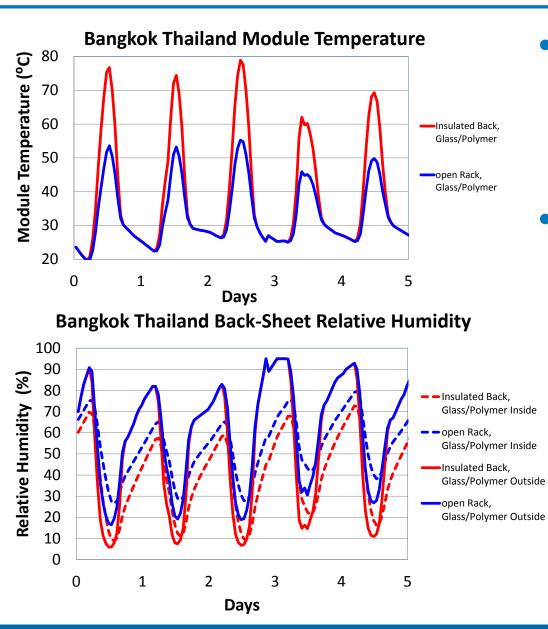
• PET is commonly used in back-sheet materials:

- Low cost
- Good electrical insulator
- Long term track record
- Hydrolysis results in embrittlement of PET which can lead to cracking and back-sheet failure.
- However, hydrolysis is only one potentially relevant failure mechanism.

PET Hydrolysis Kinetics

$$\log\left(\frac{C}{C-x}\right) = A \cdot t \cdot RH^2 \cdot e^{\left(\frac{-Ea}{kT}\right)}$$

Ea=130 kJ/mol (1.34 eV), $A=2.84 \cdot 10^{10}$ 1/day, *RH* expressed as a percentage.


*PET becomes brittle (1/3 initial tensile strength) and "failed" when about 0.55% hydrolysis of ester bonds [log(C/C-x)=~0.0024].

*W. McMahon, H. A. Birdsall, G. R. Johnson, and C. T. Camilli, "Degradation Studies of Polyethylene Terephthalate," Journal of Chemical & Engineering Data, vol. 4, pp. 57-79, 1959.

**J. E. Pickett and D. J. Coyle, "Hydrolysis Kinetics of Condensation Polymers Under Humidity Aging Conditions," Polymer Degradation and Stability, vol. 98, pp. 1311-1320, 2013.

NATIONAL RENEWABLE ENERGY LABORATORY

Back-Sheet Exposure

• The back-sheet is dry when it is hot.

 To model PET hydrolysis, we used a RH that is an average of the inside and outside humidity to estimate the degradation of PET.

PET Hydrolysis Results

$$log\left(\frac{C}{C-x}\right) = A \cdot t \cdot RH^2 \cdot e^{\left(\frac{-Ea}{kT}\right)}$$

	Years to 0.55% degradation (i.e. Hydrolysis Service Life) (y)		1000 Hours 85°C/85% RH Years equivalent (y)		
	Open	Insulated	Open	Insulated	
	Rack	Back	Rack	Back	
Denver, Colorado	13,000	4,900	6,500	2,400	
Munich, Germany	11,000	4,400	5,100	2,100	
Albuquerque, New Mexico	9,000	3,200	4,400	1,500	
Riyadh, Saudi Arabia	8,200	3,000	4,000	1,500	
Phoenix, Arizona	3,400	1,300	1,700	630	
Miami, Florida	1,100 510		530	250	
Bangkok, Thailand	700	310	320	150	

PET is predicted to "fail" (1/3rd initial tensile strength) after 2064 h of 85 °C and 85% RH.

Site Specific Equivalent T and RH

$$R = A \cdot RH^{n}e^{\left(-\frac{Ea}{kT}\right)}$$
$$T_{eq} = -\frac{Ea}{kln\left[\frac{\sum e^{\left(-\frac{Ea}{kT}\right)}}{N}\right]}$$

The equivalent temperature (T_{eq}) gives the temperature at RH_{WA} for which constant conditions will produce a degradation rate equivalent to the yearly average.

$$RH_{weighted average} = RH_{WA} = \left[\frac{\sum RH^{n}e^{\left(-\frac{Ea}{kT}\right)}}{\sum e^{\left(-\frac{Ea}{kT}\right)}}\right]^{\frac{1}{n}}$$

RH_{WA} is an average effective relative humidity weighted towards higher temperatures where most of the damage occurs.

PET Hydrolysis Equivalent T and RH

$$log\left(\frac{C}{C-x}\right) = A \cdot t \cdot RH^2 \cdot e^{\left(\frac{-Ea}{kT}\right)}$$

	Years to 0.55% degradation (i.e. Hydrolysis Service Life) (y)		1000 Hours 85°C/85% RH Years equivalent (y)		Teq for Ea=129.3 kJ/mol (°C)		RH, at Teq for 2nd order Kinetics of PET (%)	
	Open	Insulated	Open	Insulated	Open	Insulated	Open	Insulated
	Rack	Back	Rack	Back	Rack	Back	Rack	Back
Denver, Colorado	13,000	4,900	6,500	2,400	33	54	14	4.6
Munich, Germany	11,000	4,400	5,100	2,100	28	46	25	8.4
Albuquerque, New Mexico	9,000	3,200	4,400	1,500	37	58	13	4.2
Riyadh, Saudi Arabia	8,200	3,000	4,000	1,500	48	70	5.6	2.0
Phoenix, Arizona	3,400	1,300	1,700	630	46	68	9.8	3.3
Miami, Florida	1,100	510	530	250	37	54	36	14
Bangkok, Thailand	700	310	320	150	41	59	33	12

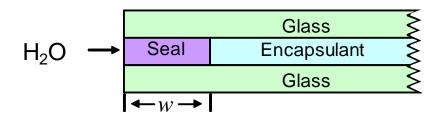
PET is predicted to "fail" (1/3rd initial tensile strength) after 2064 h of 85 °C and 85% RH.

85°C/85% RH is a Large Acceleration For PET

$$log\left(\frac{C}{C-x}\right) = A \cdot t \cdot RH^2 \cdot e^{\left(\frac{-Ea}{kT}\right)} \underbrace{\left(\frac{-Ea}{kT}\right)}_{\text{PolyEthylene Terepthalate (PET)}}$$

1

 \cap


	Teq for Ea=129 kJ/mol (°C)		RH, at Teq for 2nd order Kinetics of PET (%)		Acceleration Factor Relative to 85ºC/85% RH	
	Open Rack	Insulated Back	Open Rack	Insulated Back	Open Rack	Insulated Back
Denver, Colorado	33	54	14	4.6	59000	22000
Munich, Germany	28	46	25	8.4	46000	19000
Albuquerque, New Mexico	37	58	13	4.2	39000	14000
Riyadh, Saudi Arabia	48	70	5.6	2.0	36000	13000
Phoenix, Arizona	46	68	9.8	3.3	15000	6000
Miami, Florida	37	54	36	14	4800	2000
Bangkok, Thailand	41	59	33	12	2900	1400

PET is predicted to "fail" (1/3rd initial tensile strength) after 2064 h of 85 °C and 85% RH.

 \cap

Edge Seal Modeling

- The use of fillers, pigments, and desiccants makes the determination of modeling parameters much more difficult.
 - -Each inorganic component will have unique absorption/desorption and diffusion characteristics.
 - -The polymer matrix may have its own temperature and RH dependent diffusivity and solubility parameters.
 - -Thus, a complete model would involve 10 to 20 adjustable parameters.

$$S_m = S_o e^{\left(-\frac{Ea_s}{kT}\right)} \frac{RH\%}{100\%}$$

Mobile phase water absorption is split between the polymer matrix and the mineral components. Assume linearity with relative humidity.

$$D_{eff} = D_o e^{\left(-\frac{Ea_D}{kT}\right)}$$

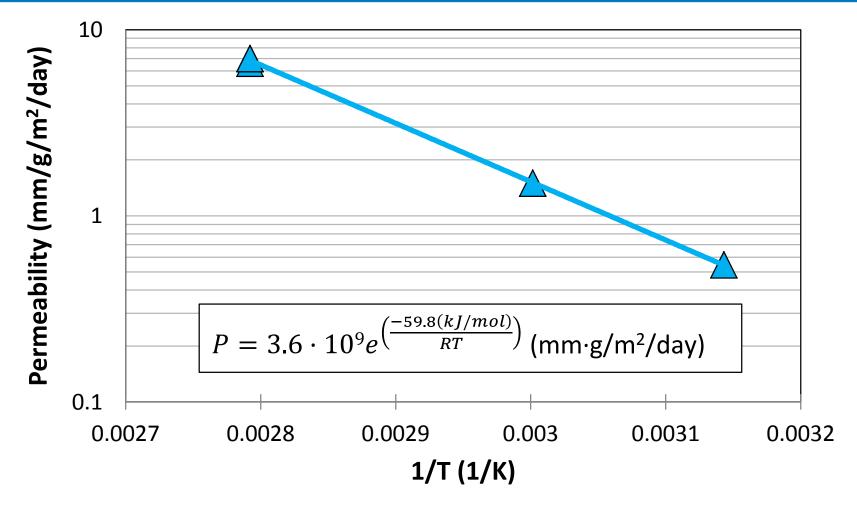
Mobile phase water diffusivity is an effective diffusivity. This accounts for a rapid equilibration between adsorbed and dissolved water.

 R_{H_2O}

A non-reversible reaction with water that immobilizes the water.

Model Parameters: R_{H_2O} , S_o, Ea_s

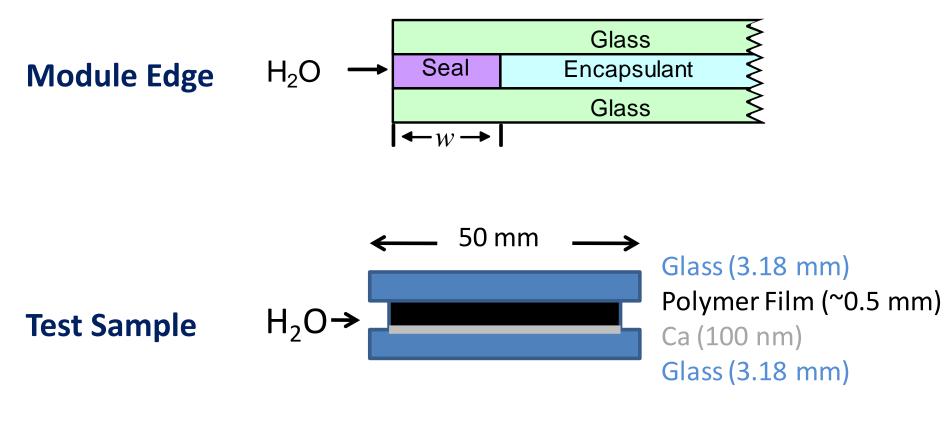
 R_{H_2O}


Measured by weighing samples before humidity exposure, after humidity exposure, and after drying. This gives values for both the reversible, *S*, and the irreversible moisture absorption, R_{H_2O} .

Measured by exposing material to controlled humidity, 85% RH at 45°C and 85°C, then drying in a TGA to determine reversible moisture loss. At both temperatures, values between 0.35 and 0.45% were obtained. This measurement was probably affected by adsorption on filler material and by loss of other volatile components.

A value of 5 kJ/mol was chosen as the lowest reasonable value, and S_o was set so S would be 0.35% at 45°C.

$$S_o$$
, Ea_s


Model Parameter: Ea_D

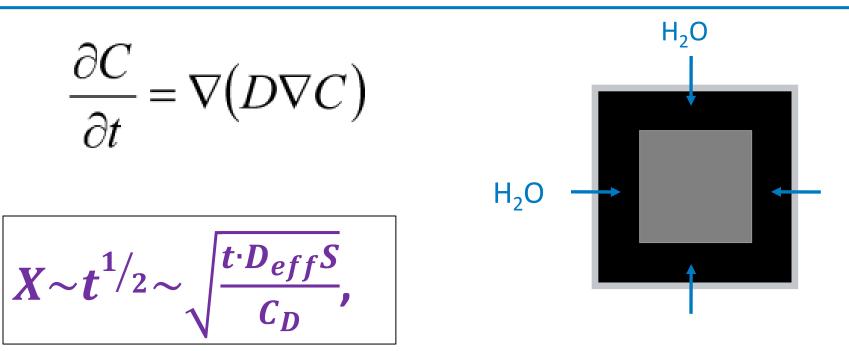
Permeability=WVTR·thickness= $D \cdot S$ for Fickian materials. Therefore, as a first order approximation $Ea_D = Ea_P \cdot Ea_S$.

$$Ea_D = 54.8 \, kJ \,/ \,mol$$

Test Sample Designed to Mimic Module Edge

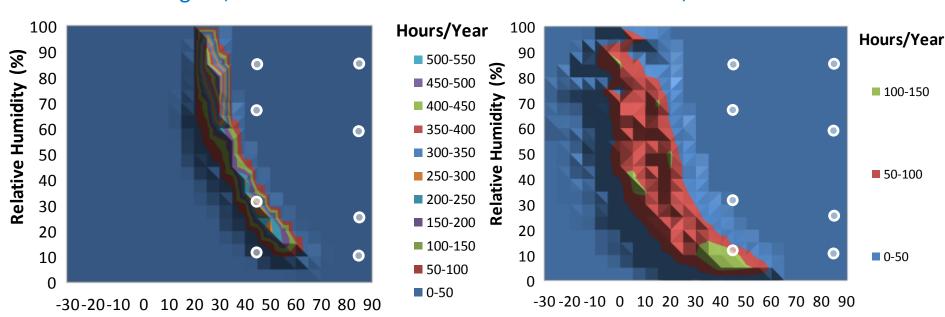
$Ca + 2 H_2 O \rightarrow Ca(OH)_2 + H_2$

Oxidation of Ca Indicates Moisture Ingress



Mirror-Like → Transparent

Ca test samples PIB #2 based, desiccant filled edge seal. Samples are 50 mm by 50 mm.


Moisture Ingress Rate Governed by Diffusion

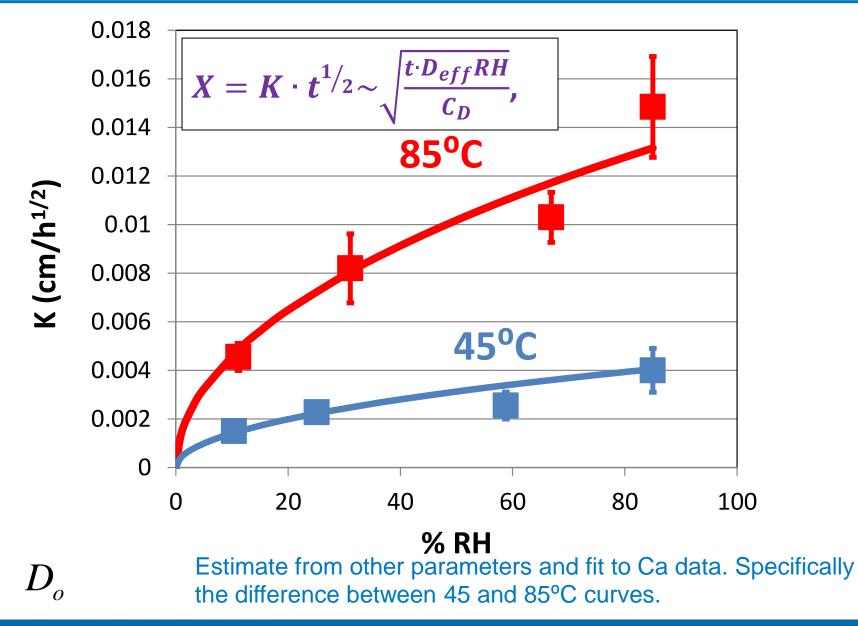
Moisture ingress measured at 45°C and 85°C, with RH held at 85%, and at lower levels using saturated salt solutions of LiCl, MgCl, or NaNO₃.

RH (%)	45	85
	(°C)	(°C)
NaNO₃	67%	59%
MgCl	31%	25%
LiCl	11%	10%

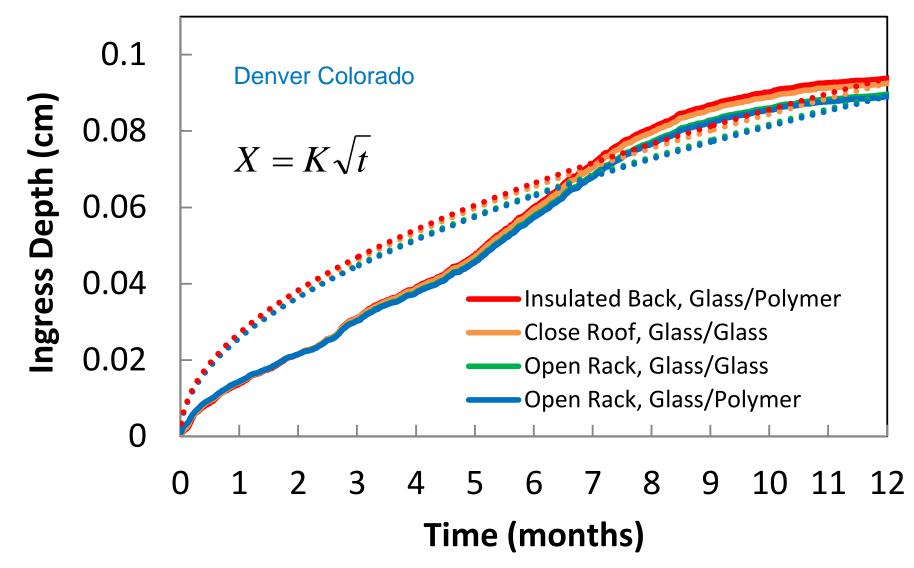
Minimizing Extrapolation Reduces Uncertainty

Temperature (°C)

Bangkok, Thailand

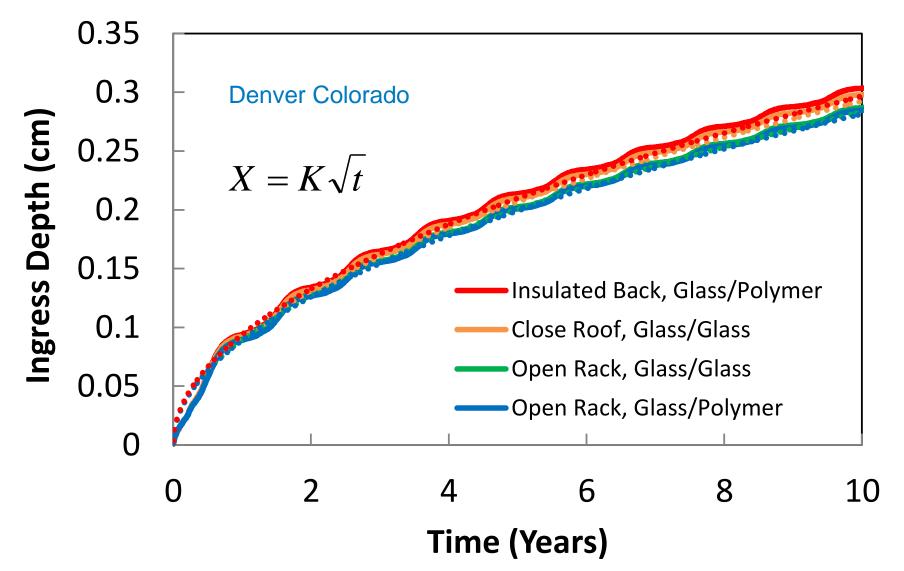

- 1. Conditions of 85°C and 85% RH are well beyond what will ever be seen in a deployed module.
- 2. Testing at low temperatures and low humidity takes an extremely long time, but it vital for reasonably minimizing extrapolation uncertainties.

RH (%)	45	85
NH (70)	(°C)	(°C)
NaNO₃	67%	59%
MgCl	31%	25%
LiCl	11%	10%


Denver, Colorado

Temperature (°C)

Permeation Measured at Low RH



Ingress Estimated Using Finite Element Analysis

Used TMY3 Data and Temperature estimates similar to King et al, and Kurtz et al.

Square Root Relation Works to Longer Times

Used TMY3 Data and Temperature estimates similar to King et al, and Kurtz et al.

Results for Different Climates

D _o (cm ² /s)=	$D_o(cm^2/s)=$ 0.33				Madalad 25 y	Madalad 25 y
Ea _p (kJ/mol)=		47	Modeled K	Modeled 25 y	Modeled 25 y equivalent time	Modeled 25 y equivalent time
S _o (g/cm ³)=		0.16	Modered K	required width	at 85°C/85% RH	at 45°C/85% RH
Ea _s (kJ/mol)=	=	5				
Reactive Ca absorption	n (g/cm³)=	0.047	$(cm/h^{1/2})$	(cm)	(h)	(years)
Denver, Colorado	Оре	en Rack	0.00087	0.40	900	1.2
Deriver, Cororado	Insulate	ed Back	0.00103	0.44	1,000	1.4
Munich, Germany	Open Rack		0.00096	0.45	1,100	1.5
Municity Germany	Insulated Back		0.00107	0.47	1,200	1.7
Riyadh, Saudi Arabia	Оре	en Rack	0.00102	0.47	1,200	1.6
myaan, sadar Arabia	Insulate	ed Back	0.00124	0.51	1,400	1.9
Phoenix, Arizona	Оре	en Rack	0.00128	0.56	1,700	2.4
Theenix, Anzona	Insulate	ed Back	0.00153	0.61	2,000	2.8
Miami, Flordia	Оре	en Rack	0.00199	0.84	3,700	5.3
Insulate		ed Back	0.00225	0.90	4,300	6.1
Bangkok, Thailand	Оре	en Rack	0.00228	0.96	4,900	6.9
Dangkok, mananu	Insulate	ed Back	0.00258	1.03	5,600	7.9

A sensitivity analysis gave about ±15% on K and Width, and ±30% on 25 yr equivalent time.

Parameters to Characterize an Environment

$$T_{eq} = \frac{-Ea}{k} \left(\frac{\sum_{i=0}^{n} e^{\left(\frac{-Ea_D}{kT_i}\right)}}{n} \right),$$

$$S_{DW} = \frac{\sum S \cdot RH \cdot D_{eff}}{\sum D_{eff}}$$

 The ability of the edge seal to take in water and hold it is related to the equilibrium solubility at the air/polymer interface and to the diffusivity. Therefore a diffusivity weighted solubility should describe a constant equivalent external water condition.

Simplified Equivalent Environment

E	D _o (cm²/s)= a _b (kJ/mol)=	17.0 54.8	Modeled	T _{eq}	Diffusivity	RH at T _{eq} and	K at Diffusivity Weighted
S _o (g/cm ³)= Ea _s (kJ/mol)=		0.0326	К	using Ea _D	Weighted Solubility	Diffusivity Weighted Solubility	Temperature and Solubility
Reactive Ca absorpt	ion (g/cm³)=	0.0320	(cm/h ^{1/2})	(°C)	(g/cm ³)	(%)	(cm/h ^{1/2})
Denver, Colorado	(Open Rack	0.000864	23.2	0.00714	21.9	0.000874
	Insul	ated Back	0.000931	37.9	0.00276	8.5	0.000963
Munich, Germany	Open Rack		0.000951	17.9	0.0136	41.8	0.000966
Information, Oermany	Insul	ated Back	0.00101	29.3	0.00623	19.2	0.00104
Riyadh, Saudi	(Dpen Rack	0.00099	39.7	0.00275	8.5	0.00103
Arabia	Insul	ated Back	0.00108	55.7	0.00111	3.4	0.00114
Decenix Arizona	(Open Rack	0.00120	37.9	0.00439	13.5	0.00122
Phoenix, Arizona	Insul	ated Back	0.00131	54.1	0.00174	5.3	0.00135
Miami Elorida	(Open Rack	0.00179	32.2	0.0149	45.9	0.00180
Miami, Florida	Insu	ated Back	0.00192	43.6	0.00753	23.1	0.00196
Depakok Thiologa	(Open Rack	0.00205	36.5	0.0140	43.1	0.00206
Bangkok, Thialand	Insul	ated Back	0.00219	48.2	0.00710	21.8	0.00224

Crystalline Silicon Metallization Corrosion

 Whitfield et al. measured cell performance of three different cell types at a variety of Temperatures and relative humidity levels.

Condition	Cell	Temp.	Rel. Humidity
	Туре	(°C)	(%)
1	A/B/C	85	85
2	A/B/C	110	100
3	A/B/C	120	100
4	A/B/C	125	100
5	A/B/C	130	80
6	A/B/C	130	90
7	A/B/C	130	95

Table 3 Design of experiments (DOE).

K. Whitfield, A. Salomon, S. Yang, I. Suez, "Damp Heat Versus Field Reliability for Crystalline Silicon", 38th IEEE PVSC, Austin TX, 2012.

Empirical Model Forms and Parameters

Model	#1 _{Fa}	Model #2				
$Model$ $TF_1 = F_1 \cdot e^{c}$	$E \cdot RH e^{\frac{Lu_1}{kT}}$	T	$Model \#2$ $TF_2 = F_2 \cdot RH^b e^{\frac{Ea_2}{kT}}$			
	Exponer	ntial Corrosion	Model			
Cell	F1 (hr)	C (no units)	Ea1 (eV)			
А	1.13E-04	-3.03	0.595			
В	7.47E-05	-2.62	0.597			
С	5.77E-05	-5.42	0.677			
	Ро	wer Law Mode	el			
Cell	F2 (hr)	b (1/%)	Ea2 (eV)			
А	1.824	-2.77	0.596			
В	0.320	-2.39	0.597			
С	1884	-4.95	0.677			

Table 4Best fit acceleration model parameters.

K. Whitfield, A. Salomon, S. Yang, I. Suez, "Damp Heat Versus Field Reliability for Crystalline Silicon", 38th IEEE PVSC, Austin TX, 2012.

Differentiation by Extrapolation to Use Environment

	Cell Me	Cell Metallization Corrosion, Open Rack Glass/Polymer Module							
		Time to Failure (y)							
	Мос	del 1, Exponer	ntial	Mode	l 2, Power L	aw			
	Cell A	Cell A Cell B Cell C C			Cell B	Cell C			
Denver	62	62	454	276.5	200	1798.4			
Albuquerque	50	50	430	372.9	245	3818.1			
Miami	17	17	59	27.9	23	88.8			
Phoenix	27	27	237	292.9	186	2986.6			
Munich	53	53	202	90.0	77	277.8			
Bangkok	13	13	48	23.5	19	77.8			
Riyadh	27	27	272	521.2	341	3070.6			
85°C/85% RH (h)	2029	2027	1936	2010.3	1970.8	1782.4			

 The worst cell at 85°C/85% RH was predicted to be the best.

Acceleration Factors Vary Widely

Acceleration Factors	PET	Edge Seal	Cell C Corrosion Kinetics		
Open Rack Glass/Polymer	Hydrolysis	Moisture Ingress	Model 1, Exponential	Model 2, Power Law	
Denver, Colorado	59000	250	2057	5134	
Munich, Germany	46000	200	913	793	
Riyadh, Saudi Arabia	36000	180	1233	8766	
Phoenix, Arizona	15000	130	1073	8526	
Miami, Florida	4800	58	266	254	
Bangkok, Thailand	2900	45	216	222	

85/85 Stress Testing

Conclusion

- To have accurate accelerated stress tests, you must use small acceleration factors or know the kinetics very well.
- It is likely that each degradation mechanism will have different activation energies.
- Different degradation kinetics can have significantly different responses in a given environment.
- Keeping acceleration close to use conditions and at low values will decrease the associated uncertainty.

Sarah Kurtz David Miller Peter Hacke

This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.